Computerlinguistische Anwendungen
Python/Git

Thang Vu

CIS, LMU
thangvu@cis.uni-muenchen.de

April 15, 2015



Introduction

@ Review of Python
@ Introduction to NumPy
@ Introduction to Git



Core Data Types

Review of Python

Object type Example creation

Numbers 123, 3.14

Strings this class is cool’

Lists [1,2,[1,2]]

Dictionaries {1’: ’abc’, ’2’: 'def’}

Tuples (1, 'Test’, 2)

Files open(’file.txt’), open(file.bin’, 'wb’)
Sets set(’a’, 'b’, ’c)

Others boolean, None

Program unit types

Functions, modules, classes



Review of Python

Variables

@ store data, e.g., numbers
@ content can be changed (is variable)
@ have a data type

@ assignment: var_name = value, e.g., num = 17



Review of Python

Dynamic Typing

@ dynamic typing model

@ types are determined automatically at runtime
@ type of a variable can change

@ check type with type (var)



Review of Python

Number Data Types

@ integers, floating-point numbers, complex numbers, decimals,
rationals

@ Numbers support the basic mathematical operations, e.g.:

+ addition

*, / multiplication, division

*%x exponentiation

<, >, <=, >= comparison

I =, == (in)equality

1 B
2N >>> float (1/4)
KN >>> float (1)/4



Review of Python

String Data Types

@ immutable sequence of single characters
@ ASCII: 256 characters: " tree’,’2.1’,’two tokens’

@ Unicode: > 110,000 characters: u’ tree’,u’ o’,
u’ \u2B0000’



Review of Python

Operations

sl = "the’

Operation
len(sl)
s1[0]
sl[-1]

9]
=
v O
w

Description

length of the string
indexing, 0-based
backwards indexing
slicing, extracts a substring
slicing, extracts a substring
concatenation

repetition

(in)equality

Output

3

14 t 14

14 e 4

"the'

14 th 14

"the sun’
"thethethe’
True, False



Review of Python

String-Specific Methods

sl

= "these’

Operation

r_r

sl

sl

sl.
sl.
sl.

.join(sl)

.find(’se’)

.replace (' ese’

split('s’)
upper ()
lower ()

’

rat’)

Description
concatenate with delim-
iter -’

finds offsets of
strings

replace substrings, s1 is
still the initial string
splits string at delimiter
upper case conversions
lower case conversions

sub-

["the’,

Output
"t-h-e-s-e’

"that’

Iel]
"THESE’
"these’



Review of Python

@ collection of arbitrarily typed objects

@ mutable

@ positionally ordered

@ no fixed size

@ initialization: L = [123, ’'spam’, 1.23]
@ empty list: L = []

10



Review of Python

Operations

L = [123, ’'spam’, 1.23]

Operation Description Output

len(L) length of the list 3

L[1] indexing, 0-based " spam’

L[0:2] slicing, extracts a sublist 123, ’'spam’, 1.23]

[
L + [4, 5, 6] concatenation [123, ’'spam’, 1.23,
4, 5, 6]
[123, 'spam’, 1.23,
123, ’'spam’, 1.23]

L % 2 repetition

11



Review of Python

List-Specific Methods

L = [123, ’'spam’, 1.23]
Operation Description
L.append (' NI’) append to the end
L.pop (2) delete item
L.insert (0, ’"aa’) insertitem atindex
L.remove (123) remove given item
L.sort () sort list
L.reverse () reverse list

Output

[123, ’'spam’, 1.23, ’'NI’]
[123, 'spam’]

["aa’, 123, ’"spam’, 1.23]
["spam’, 1.23]

[1.23, 123, ’spam’]
[1.23, ’'spam’, 123]

12



Review of Python

Nested Lists

Let us consider the 3x3 matrix of numbersM = [[1, 2, 3],
(4, 5, 61, [7, 8, 911].Misalistof 3 objects, which are in
turn lists as well and can be referred to as rows.

@ M[1] —returns the second row in the main list: [4, 5, 6]

@ M[1] [2] —returns the third object situated in the in the second
row of the main list: 6

13



Review of Python

Dictionaries

@ Dictionaries are not sequences, they are known as mappings
@ They are mutable like lists
@ They represent a collection of key-value pairs

@ eg.

>>> D = {'food':'Spam', 'quantity':4, 'color':'pink'}

14



Review of Python

Dictionary Operations

il >>> D = {'food':'Spam', 'quantity':4, 'color':'pink'}

Pl >>> D['food'] #Fetch value of key 'food'

£l 'Spam’

Y >>> D['quantity'] += 1 #Add 1 to the value of 'quantity'
58 >>> D

6

D = {'food':'Spam', 'quantity':5, 'color':'pink'}

15



Review of Python

Dictionary Operations (cont.)

N >>> D = {}

P8 >>> D['name'] = 'Bob' #Create keys by assignment
B >>> D['job'] = 'researcher'

8 >>> D['age'] = 40

5

(] >>> D

/Al D = {'name':'Bob', 'job':'researcher', 'age':40}

8

R >>> D['name']

08 Bob

16



Review of Python

Dictionary Operations (cont.)

jll >>> #Alternative construction techniques:
2N >>> D = dict (name='Bob', age=40)
€l >>> D = dict([('name', 'Bob'), ('age', 40)])
8 >>> D = dict(zip(['name', 'age'l, ['Bob', 401]))
] >>> D
(] {'age': 40, 'name': 'Bob'}
VM >>> #Check membership of a key
Sl >>> 'age! D
i} True
>>> D.keys () #Get keys
['age', 'name']
>>> D.values () #Get values
[40, 'Bob']
>>> D.items () #Get all keys and values
[('age', 40), 'name', 'Bob']
>>> len (D) #Number of entries
2

17



Review of Python

Dictionary Operations (cont.)

1
1

1
2
]
4
5
6
7
8
9
0]
1

>>> D = {'name': 'Bob'}
>>> D2 = {'age': 40, 'Jjob':
>>> D.update (D2)

>>> D

{'job': 'researcher',K 'age':
>>> D.get ('job'")

'researcher’

>>> D.pop('age')

40

>>> D

{'job': 'researcher', 'name':

'researcher'}

40, 'name': 'Bob'}

'Bob"'}

18



Review of Python

@ Sequences like lists but immutable like strings

@ Used to represent fixed collections of items

O©CoONOOOAWN =

>>>
>>>
4

>>>

(1,

>>>
1

>>>
2272

T = (1,

len (T)

T + (5,

20 3,
T[O]

len (T)

4,

2,

3,

4)

#A 4-item tuple
#Length

#Concatenation

#Indexing, slicing and more

19



Review of Python

@ Mutable

@ Unordered collections of unique and immutable objects

O©OONOO O WN =

>>> set ([1, 2, 3, 4, 31])
set ([1, 2, 3, 4])
>>> set ('spaam')

set(['a', 'p', 's', 'm'])
>>> {1, 2, 3, 4}

set ([1, 2, 3, 4])

>>> 5 = {'s', 'p', 'a', 'm'}
>>> 3§

set(['a', 'p', 's', 'm'])
>>> S.add('element')
>>> 3

set(['a', 'p', 's', 'm', 'element'])

20



Review of Python

@ The main interface to access files on your computer
@ Can be used to read and write text

>>> f = open('data.txt','w') #Make a new file in output
mode 'w'

>>> f.write('Hello\n') #Write a string to it

4

>>> f.write('World\n'")

(1, 2, 3, 4, 5, 6)

>>> f.close() #Close to flush output puffers to
disk

>>> #Continue writing at the end of an existing file
>>> f.write('data.txt', 'a')

>>> f.write ('Cont.'\n)

>>> f.close()

21



Review of Python

>>> f = open('data.txt') #'r' is default processing mode

>>> text = f.read() #Read entire file in a string

>>> text

Hello\nWorld\nCont.

>>> text #print interprets control
characters

Hello

World

Cont.

>>> text.split () #File content is always a string

['Hello', 'World', 'Cont.']

>>> line open ('data.txt','r'): line

22



Review of Python

Immutable vs Mutable

Immutable:

@ numbers

@ strings

@ tuples
Mutable:

@ lists

@ dictionaries

@ sets

@ newly coded objects

23



Review of Python

Testing: if statements

>>> x = 'killer rabbit'
>>> x == 'roger':
'shave and a haircut'
x == 'bugs':

'whats up?'

'run away!'

O©CoONOOA~WN =

run away!

The eli f statement is the equivalentof else ifindJavaorelsif
in Perl.

24



Review of Python

Looping: while loops

N >>> True:

2 'Type Ctrl-C to stop me!'

3

Y >>> x == 'spam'

5 X: #while x is not empty
6 x

7 x = x[1:]

8

9

spam
pam
am

m

25



Review of Python

Looping: for loops

The for loop is a generic iterator in Python: it can step through the
items in any ordered sequence or other iterable objects (strings, lists,
tuples, and other built-in iterables, as well as new user-defined
objects).

W =
I
=

26



Review of Python

Looping: for loops

The most efficient file scanner in Python:

il #use iterator: best for text input
2 I line open ('data.txt"'):
3 line

This is not only the shortest but as well the most efficient coding for
reading a file in Python. It relies on file iterators to automatically read
one line on each loop iteration, which allows it to work with arbitrarily
large files — often needed in NLP!

27



Review of Python

Function

@ A function is a device that groups a set of statements so they can
be run more than once in a program
@ Why use functions?

e Maximizing code reuse and minimizing redundancy
e Procedural decomposition

28



Review of Python

Function: def statements

1 name (argl, arg2, ..., argN):
2 statements

name (argl, arg2, ., argN):

1
2
3

value

29



Review of Python

Function: def statements

1 func(): .. #Create function object

2N func () #Call object

Bl func.attr = value #Attach attributes

N >>> times (x, y): #Create and assign function
2 X*Y #Body executed when called
3

N >>> times (2, 5)

Y 10

30



Review of Python

Module

Packaging of program code and data for reuse

Provides self contained namespaces that minimize variable name
clashes across programs

The names that live in a module are called its attributes

Typically correspond to Python program

Module might be extensions coded in external languages such
C++ or Java

31



Review of Python

Module

@ import — Lets a client (importer) fetch a module as a whole

@ from— Allows clients to fetch particular names from a module

32



Review of Python

Imports and Attributes

il # save in b.py
2 spam (text) :
] text + ' spam’

il # File a.py
2 b #Import module b
Bl b.spam('hallo') #Print 'hallo spam'

33



Review of Python

Imports and Attributes

/

Top-level

a.py

Modules

™

Standard
library
modules

34



Review of Python

Regular Expressions

@ Used to generate patterns that can be used to search for strings

@ Is an algebraic formula whose value is a pattern consisting of a
set of strings

regex string

a — a

ab — ab

ax — a,aa,aaa, aaa...
axbx — ab, abb, aabb, aab ...

35



Review of Python

Regular Expressions

@ What can you match with the following regular expressions?

1. ~[Tt]lthe\b.x

2. [:;1-2[\1opPD\)\ (]
3. <.%x2>

4. \d+\-year\-old

A W=

36



Review of Python

Regular Expressions in Python

@ To use Regular Expressions in Python, import the module re

@ Then, there are two basic ways that you can use to match
patterns:

@ re.match ()
@ re.search ()

@ Both return None when there is no match

1 re

2

Bl wordlist = ['farmhouse', 'greenhouse', 'guesthouse']
4

5 w wordlist:

6 re.match (' (g.*?) (?=house) ', w):

7 w

Il match = re.search(pattern, string)

2 match:

] process (match)

37



Review of Python

Regular Expressions in Python

Another way of using regular expressions is to compile them and
reuse them as objects in your code.

regex.match (w) :
w

1 re

2

Bl wordlist = ['farmhouse', 'greenhouse', 'guesthouse']
] regex = re.compile (' (g.*?) (2=house)')

5

6 W wordlist:

7

8

38



Review of Python

Python classes

Classifier:
__init_ (self, lambdal, lambda2):
self.1l1l = lambdal
self.l2 = lambda2
train(self, data):

test (self, data):

O©CoO~NOOA~WN =

name = '__main__ ':
'

data = 'This is training data'
testdata = 'This is test data'
lambdal = 0.002
lambda2 = 0.0005
model = Classifier (lambdal, lambdaZ2)
model.train (data)
model.test (testdata)

@ Access the data and the methods of each objects using
objectName.attributes and objectName.methods

39



Review of Python

Storing objects

@ Objects save data which we might want to reuse in the future
@ Use pickle, you can save them and load them for reuse

40



Review of Python

import pickle

pickle

Classifier:
__init_ (self, params):
self.params = params
setParams (self, params) :
train(self, data):
test (self, testdata):

O©OONO O WN =

name = '__main

params = [paraml, param2, param3]
data = 'This is training data'

v,

model = Classifier (params)

model.train (data)

#Store the model somewhere to reuse
pickle.dump ( model, open( 'model.p', 'wb' ) )

41



Review of Python

import pickle

pickle

Classifier:
__init__ (self, params):
self.params = params
setParams (self, params) :
¢ data) :
testdata) :

O©oONOOOAWN =

name = '__main

7o

testdata = 'This is test data'

model = pickle.load(open('model.p', 'rb'))
model.test (testdata)

42



NumPy package

@ NumPy is a package supporting for large, multi-dimensional
arrays and matrices, along with a large library of high-level
mathematical functions to operate on these arrays

e ndarray object is the core of the NumPy package

e ndarray = n-dimensional arrays of homogeneous data

e The standard mathematical and scientific packages in Python
uses NumPy arrays

e More information in http://www.numpy.org/

@ NumPy will be helpful since machine learning works with high
dimensional arrays

43



NumPy package

ndarray vs. list

@ An ndarray is like a list
@ However, there are several differences:
o All the elements in an ndarray should have the same type. In a
list, you can have different types
e The number of elements in an ndarray is fixed, i.e. the number of
elements cannot be changed
e ndarray in NumPy is more efficient and faster than list

44



NumPy package

How to use NumPy

@ Install NumPy (see HOWTO in
http://www.scipy.org/scipylib/download.html)

@ Take a look on the NumPy tutorial in
www.scipy.org/Tentative_ NumPy_Tutorial

45



NumPy package

NumPy: Should know

1 = numpy np

Pl # Several ways to create a numpy array
¥ >>> arr = np.array([[1, 2, 3], [4, 5, 61, [7, 8, 911)
“8 >>> a = np.ones((3,3), dtype=float)

LY >>> b = np.zeros((3,3), dtype=£float)

8 >>> c = np.ones_like(arr)

4 >>> d = np.zeros_like(arr)

tt} >>> e = np.identity (3, dtype = float)
N array([[1, O, 0],

10 (o, 1, 01,

11 [0, O, 111)

46



NumPy package

NumPy: Should know

O©CoONOOA~WN =

>>> numpy np
# create a numpy array from a list
>>> arr = np.array([[1l, 2, 3], [4, 5, 61, [7, 8, 911)
# returns the array dimension
>>> arr.ndim
2
# returns a tuple with the size of each array dimension
>>> arr.shape
(3, 3)
# returns the number of all the elements
>>> arr.size
9
# returns the transposed matrix
>>> arr.T
array ([[1, 4, 7],
(2, 5, 81,
[3, 6, 911)
# returns the type of all the elements
>>> arr.dtype
dtype ('int64"')

47



NumPy package

NumPy: Should know

>>> numpy np

# create a numpy array from a list

>>> arr = np.array([[1l, 2, 3], [4, 5, 61, [7, 8, 911])
# array slicing and indexing

>>> arr[1]

array ([4, 5, 6]

>>> arr[1l][2]

6

>>> arr[:2

O©ONO O WN =

]
array ([1, 2, 3],
[4, 5, 6])
>>> arr([l:]
array([4, 5, 6],
[7, 8, 91)
>>> arr([1][:2]
array[4, 5]

48



NumPy package

NumPy: Should know

1 numpy np
2N >>> arr = np.array([[1, 2, 3], [4, 5, 61, [7, 8, 911)
&Y array([[1, 2, 31,
4 [4, 5, 6],
5 [7, 8, 911)
() # array methods
8l >>> arr.flatten()
t} array([1, 2, 3, 4, 5, 6, 7, 8, 9])
N >>> b = np.array([[1], [41, [7])
array ([[1],
[41,
[711)
>>> c = np.concatenate((arr, b), axis=1l)
array ([[1, 2, 3, 1],
[4, 5, 6, 4],
(7, 8, 9, 711)

49



Introduction to Git

Version control system

@ >1 people work on the same documents (often code)
@ It helps even if you are the only person who works on the code

e Sometimes, you wish to go back to the past and undo your
changes

@ There are several VCS softwares such as svn, git, ...

50



Introduction to Git

Git - a distributed VCS

+ A free and open
source distributed
version control system
+ Is easy to use

+ Very helpful in many
contexts, especially in
software development

Server Computer
Version Database

Version 3
Version 2
Version 1

4 %

[4
Computer A

Version Database | |

Al
Computer B

Version Database

Version 2

Version 1




Introduction to Git

Other subversion control systems

Checkins Over Time

\

File A — Al _— A2
File B > Al > A2
File C —» Al — A2 _— A3

52



Git snapshot

Introduction to Git

Checkins Over Time

File A

File B

File C

Cc1

Cc2

A2

Bl

c2

A2

B2

€3

53



Introduction to Git

A Local Git Project

Staging
Area

.git directory
(Repository)

Working
Directory

Checkout the project

Stage Fixes

54



Introduction to Git

Git workflow

@ Modify the files in local directory
@ Stage the files and adding their snapshots in the staging area

@ Do a commit, which takes the files as they are in the staging area
and stores that snapshot permanently to YOUR Git directory

@ Atthe end, if everything is done, submit the changes to the
repository on the server

55



Introduction to Git

How to start

@ Get access to a Git server, e.g. CIP-Pool
e Every student has a CIP-Pool access to the git server from IFI
e You can request an account at: https://tools.rz.ifi.Imu.de/cipconf
@ Install git on your machine
o Generally you can find git at: http://git-scm.com/
e For Unix Systems (Linux and MacOS): Most package managers
have a git already as a package
e For Windows: Windows users can get an easy installer at the
above mentioned site

56



Introduction to Git

Starting a project

@ There are two ways: create or clone
@ Create a new project

i $ git init [project_name]

Pl # create new repository with specified name

Bl # [project_name] can be omitted in make the working
directory the git controlled folder

@ Clone an existing project

$ git clone /path/to/repository
# clone a local repository

$ git clone [URL]

# clone remote repository

A WN

57



Introduction to Git

Make a change in your local

@ Get status
Il $ git status
Pl # Lists all new/modified files to be commited
@ You can propose changes using:
N $ git add [file]
PA # Snapshots the file in preparation for versioning

@ Or sometime you want to remove them:

N S git reset [file]

PA # Unstages the file, but preserve its contents
@ Then commit these changes

Il $ git commit —m "[descriptive message]"
Pl # Records file snapshots permanently in version history

58



Introduction to Git

Submit the local change to the server

@ With the command line:
$ git push [alias] [branch]
2

# Uploads all local branch commits
@ Alias?

e So that you don’t have to use the full URL of a remote repository
every time — Git stores an alias or nickname for each remote
repository URL

e By default, if you cloned the project (as opposed to creating a new
one locally), Git will automatically add the URL of the repository
that you cloned from under the name ’origin’

@ Branch? At that point, you have only the ‘'master’ branch
@ Therefore, you will often use

$ git push origin master

59



Introduction to Git

Branch

@ Branches are used to develop features isolated from each other

@ The master branch is the "default" branch when you create a
repository

@ Use other branches for development and merge them back to the
master branch upon completion

git branch

# Lists all local branches in the current repository

git branch [branch-name]

Creates a new branch

git checkout [branch-name]

Switches to the specified branch and updates the
working directory

git merge [branch]

Combines the specified branchs history into the
current branch

git branch -d [branch-name]

Deletes the specified branch

60



Introduction to Git

Branch

@ However, if you changed the same part of the same file differently
in the two branches, Git will not be able to merge them

@ Git adds standard conflict-resolution markers to the files that have
conflicts, so you can open them manually and resolve those

conflicts
1| <<<<<<< HEAD:myfile
28 This line written without newlines
3 [
8 This line written with a
LY newline
) >>>>>>> [branch_name] :myfile

@ To resolve this conflict you have to remove the annotation and
keep one/rewrite the lines with the conflicts.

61



Introduction to Git

@ To get the latest updates you can use:

o Ohs WN =

o

$

ENR SR

Uy

git pull

Downloads bookmark history and
git diff

Shows file differences not yet
git diff --staged

Shows file differences between

file version
git fetch [bookmark]
Downloads all history from the

incorporates changes
staged

staging and the last

repository bookmark

62



Introduction to Git

Redo changes & Undo files

@ Undo a commit

il $ git reset [commit]
P # Undoes all commits after [commit], preserving changes
locally

@ You should almost never do this

iN $ git reset —--hard [commit]
PA # Discards all history and changes back to the
specified commit

63



Introduction to Git

More about Git

@ A compact list of all the important command lines on our website
@ A good tutorial: http://gitimmersion.com/index.html
@ Take the time and practice yourself

64



65



	Review of Python
	NumPy package
	Introduction to Git

