
Representing Documents;
Unit Testing II

Benjamin Roth

CIS LMU

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 1 / 26

Documents and Word Statistics

Often, documents are the units a natural language processing system
starts with.

Document: the basic organizational unit that is read in before further
processing.

“Documents” can be
I Tweets
I Wikipedia articles
I Product reviews
I Web pages
I ...

In the following we will look into
I how to represent documents
I how to write a basic search engine over documents

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 2 / 26

Representing Documents in Python

Let’s write a simple class for text documents.

How to represent a document in python?
I What pieces of information do we want to store?

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 3 / 26

Representing Documents in Python

How to represent a document in python?
I What pieces of information do we want to store?

F The raw text (string) of the document
F The tokenized text (list of strings)
F The token frequencies of the documents
F A unique identifier for each document
F ...

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 4 / 26

Token frequencies

How often did a particular word occur in a text?

id:doc1

text:
The raw text string of the document
The tokenized text list of strings
The token frequencies of the docu-
ments A unique identifier for each
document

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 5 / 26

Token frequencies

How often did a particular word occur in a text?

id:doc1

text:
The raw text string of the document
The tokenized text list of strings
The token frequencies of the docu-
ments A unique identifier for each
document

’the’: 5
’of’: 3
’text’, 2
’document’, 2
’for’, 1
...

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 6 / 26

Token frequencies

How often did a particular word occur in a text?

id:doc1

text:
The raw text string of the document
The tokenized text list of strings
The token frequencies of the docu-
ments A unique identifier for each
document

’the’: 5
’of’: 3
’text’, 2
’document’, 2
’for’, 1
...

This is an important summary information - we can measure similarity
between documents by computing the “overlap” of their token
frequency tables. (tfidf+cosine similarity)

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 7 / 26

A simple document class

from nltk import FreqDist, word_tokenize

class TextDocument:

def __init__(self, text, identifier=None):

""" Tokenizes a text and creates a document."""

Store original version of text.

self.text = text

Create dictionaries that maps tokenized,

lowercase words to their counts in the document.

self.token_counts = # TODO

self.id = identifier

How to tokenize a Text?

How to create a dictionary from words to counts?

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 8 / 26

A simple document class
How to tokenize a Text?

I Split using regular expressions, e.g.:
>>> input = "Dr. Strangelove is the U.S. President’s advisor."

>>> re.split(r’\W+’, input)

[’Dr’, ’Strangelove’, ’is’, ’the’, ’U’, ’S’, ’President’, \

’s’, ’advisor’, ’’]

I Use nltk:
>>> from nltk import word_tokenize

>>> word_tokenize(input)

[’Dr.’, ’Strangelove’, ’is’, ’the’, ’U.S.’, ’President’, \

"’s", ’advisor’, ’.’]

Define a helper function:

def normalized_tokens(text):

""" Returns lower-cased tokens.

>>> normalized_tokens(input)

[’dr.’, ’strangelove’, ’is’, ’the’, ’u.s.’, ’president’, \

"’s", ’advisor’, ’.’]"""

pass # TODO

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 9 / 26

A simple document class

How to create a dictionary from words to counts?
⇒ White board.

Using dictionary comprehension?

Using a for loop?

Using the nltk frequency distribution (FreqDist)?
⇒ check the documentation.

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 10 / 26

How to create a document

Document can be created from different starting points ...
I By setting text and id as strings.
I By reading plain text file.
I By reading compressed text file.
I By parsing XML.
I By requesting and parsing an HTML file.
I ...

However, only one constructor is possible in python.
⇒ Arguments of the constructor: the basic elements which are
common to all creation scenarios, and define the object (in our case
text and document id)

Similar to multiple constructors:
Several different static class methods, that call the underlying base
constructor.

(This is a simple version of the so-called factory pattern)

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 11 / 26

Multiple static “constructors”

class TextDocument:

def __init__(self, text, identifier=None):

...

@classmethod

def from_text_file(cls, filename):

filename = os.path.abspath(filename)

TODO: read content of file into string

variable ’text’.

...

return cls(text, filename)

@classmethod

def from_http(cls, url, timeout_ms=100):

...

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 12 / 26

Class methods

The first argument (often named cls) of a function with the
@classmethod function decorator, refers to the class itself (rather
than the object).

The constructor (or any other class method) can then be called from
within that function using cls(...)

What is the advantage of using...

@classmethod

def from_text_file(cls, filename):

#...

return cls(text, filename)

... over using?

@classmethod

def from_text_file(cls, filename):

#...

return TextDocument(text, filename)

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 13 / 26

Brainstorming

What are cases where it can make sense to use factory constructors
(i.e. create instances using a method with the @classmethod

decorator)?

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 14 / 26

Use cases for Factory Constructors
If you create instances ...

... by reading from different sources.
Examples: files, http, sql-database, mongodb, elastic Search index

... by reading from different formats.
Examples: xml, json, html

... by parsing string options.
Example:

a=MyTarClass(extract=True, verbose=True, gzip=True, \

use_archive_file=True)

b=MyTarClass.fromOptions("xzvf")

(Can you guess what this class might do?)

... where the same argument type is interpreted/parsed differently
Example:

a=MyTime.fromTIMEX2("2017-08-01")

b=MyTime.fromGerman("1. August 2017")

...
Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 15 / 26

Next time: How to write the simple Search Engine

Demo

Questions?

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 16 / 26

Testing with the unittest module

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 17 / 26

Test-Driven Development (TDD): Recap

Write tests first (, implement functionality later)

Add to each test an empty implementation of the function (use the
pass-statement)

The tests initially all fail

Then implement, one by one, the desired functionality

Advantages:
I Define in advance what the expected input and outputs are
I Also think about important boundary cases (e.g. empty strings, empty

sets, float(inf), 0, unexpected inputs, negative numbers)
I Gives you a measure of progress (“65% of the functionality is

implemented”) - this can be very motivating and useful!

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 18 / 26

The unittest module

Similar to Java’s JUnit framework.

Most obvious difference to doctest: test cases are not defined inside
of the module which has to be tested, but in a separate module just
for testing.

In that module ...
I import unittest
I import the functionality you want to test
I define a class that inherits from unittest.TestCase

F This class can be arbitrarily named, but XyzTest is standard, where
Xyz is the name of the module to test.

F In XyzTest, write member functions that start with the prefix test...
F These member functions are automatically detected by the framework

as tests.
F The tests functions contain assert-statements
F Use the assert-functions that are inherited from unittest.TestCase

(do not use the Python built-in assert here)

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 19 / 26

Different types of asserts

Question: ... what is the difference between “a == b” and “a is b”?

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 20 / 26

Example: using unittest

test square.py

import unittest

from example_module import square

class SquareTest(unittest.TestCase):

def testCalculation(self):

self.assertEqual(square(0), 0)

self.assertEqual(square(-1), 1)

self.assertEqual(square(2), 4)

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 21 / 26

Example: running the tests initially

test square.py

$ python3 -m unittest -v test_square.py

testCalculation (test_square.SquareTest) ... FAIL

==

FAIL: testCalculation (test_square.SquareTest)

--

Traceback (most recent call last):

File "/home/ben/tmp/test_square.py", line 6, in testCalculation

self.assertEqual(square(0), 0)

AssertionError: None != 0

--

Ran 1 test in 0.000s

FAILED (failures=1)

$

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 22 / 26

Example: running the tests with implemented functionality

$ python3 -m unittest -v test_square.py

testCalculation (test_square.SquareTest) ... ok

--

Ran 1 test in 0.000s

OK

$

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 23 / 26

SetUp and Teardown

setUp and teardown are recognized and exectuted automatically
before (after) the unit test are run (if they are implemented).

setUp: Establish pre-conditions that hold for several tests.
Examples:

I Prepare inputs and outputs
I Establish network connection
I Read in data from file

tearDown (less frequently used): Code that must be executed after
tests finished
Example: Close network connection

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 24 / 26

Example using setUp and tearDown

class SquareTest(unittest.TestCase):

def setUp(self):

self.inputs_outputs = [(0,0),(-1,1),(2,4)]

def testCalculation(self):

for i,o in self.inputs_outputs:

self.assertEqual(square(i),o)

def tearDown(self):

Just as an example.

self.inputs_outputs = None

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 25 / 26

Conclusion

Test-driven development

Using unittest module

Also have a look at the online documentation!
https://docs.python.org/3/library/unittest.html

Questions?

Benjamin Roth (CIS LMU) Representing Documents;Unit Testing II 26 / 26

https://docs.python.org/3/library/unittest.html

