
Version Control with GIT

Benjamin Roth

CIS LMU München

Benjamin Roth (CIS LMU München) Version Control with GIT 1 / 30

Version Control

”Version control [...] is the management of changes to documents,
computer programs, large web sites, and other collections of
information.” (Wikipedia)

Track changes over time. (”What was the reason we changed this?”)

Option to undo and redo.

Collaboration.

Not just for managing source code, websites etc:
also for writing theses, reports, archiving results from experiments, ...

This class: basic git concepts using the command line.

Benjamin Roth (CIS LMU München) Version Control with GIT 2 / 30

Git

Developed in 2005 by Linus Torvalds and other Linux kernel
developers.

Free software under GNU GPL.

De facto standard for version control today.

Distributed:
Every Git working directory is a full-fledged repository

I complete history and full version-tracking capabilities
I independent of network access or a central server.

Rapid branching and merging:
A change will be merged more often than it is written.

Benjamin Roth (CIS LMU München) Version Control with GIT 3 / 30

Git Underlying Ideas

Git thinks of data like a set of snapshots of a miniature filesystem.

With every commit, Git takes a snapshot of your files and stores a
reference to that snapshot.

Efficiency: If files have not changed, Git stores just a link to the
previous identical file it has already stored.

Benjamin Roth (CIS LMU München) Version Control with GIT 4 / 30

Git Underlying Ideas

Most operations in Git only need local files and resources to operate.

Check-sums:
I Everything is referred to by a checksum.
I SHA-1 hashing: 24b9da6552252987aa493b52f8696cd6d3b00373

Git generally only adds data: hard to do anything that is not
undoable (e.g. permanently erase data).

Benjamin Roth (CIS LMU München) Version Control with GIT 5 / 30

Git: States

Files can be in the following states:
I unmodified / committed: data is safely stored in your local database.
I modified: file changed but not committed to database yet.
I staged: modified file is marked to go into your next commit.
I (untracked: file not managed by git)

Benjamin Roth (CIS LMU München) Version Control with GIT 6 / 30

Recording Changes to the Repo

Tracked files:
I Files that were in the last snapshot ...
I ... and newly added files.
I Can be unmodified, modified, or staged.

Untracked files: Anything else

After first clone: All files will be tracked and unmodified.

Adding untracked file: file will be staged.

etc.

Benjamin Roth (CIS LMU München) Version Control with GIT 7 / 30

Git Places and Directories

Working directory: single checkout of one version of the project.
Placed on disk to be used and modified.

Staging area: File (in .git directory) storing what will go into the
next commit.

.git directory: Contains object database with complete project
history and meta-data.

Benjamin Roth (CIS LMU München) Version Control with GIT 8 / 30

Basic Git Workflow

1 Modify files
I in working directory

2 Stage the files
I Add snapshot to staging area

3 Do a commit
I Stores snapshot of staging area permanently in repository.

Benjamin Roth (CIS LMU München) Version Control with GIT 9 / 30

Configuring Git

Setting up user name and email:
git config --global user.name "John Doe"

git config --global user.email johndoe@example.com

Setting up different than default editor:
git config --global core.editor emacs

Getting help:
git help config

git-scm.com

Benjamin Roth (CIS LMU München) Version Control with GIT 10 / 30

git-scm.com

Setting up SSH for Git

It can be convenient to connect with SSH to hosting services like
GitHub and Bitbucket.

I No need to enter password all the time.

To access a remote over SSH:
I Public ssh key (of your computer) is shared with server.
I Your computer can hence verify itself (using the corresponding private

key).
I Just upload your public key (~/.ssh/id_rsa.pub) to the service.

Benjamin Roth (CIS LMU München) Version Control with GIT 11 / 30

Using Git with a Server and SSH

Check wether you already have a key pair:

$ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAklOUpkDHrfHY17SbrmTIp

GPl+nafzlHDTYW7hdI4yZ5ew18JH4JW9jbhUFrviQzM7X88XypNDvjYNb

mZ+AW4OZPnTPI89ZPmVMLuayrD2cE86Z/il8b+gw3r3+1nKatmIkjn2so

NrRFi9wrf+M7Q== beroth@mylaptop.local

If not, create it:

$ ssh-keygen

Copy-paste public key to Git hosting service (Github...), which will
store it as an authorized key.

Benjamin Roth (CIS LMU München) Version Control with GIT 12 / 30

Getting a Git Repository

Either take an existing directory and import it into Git or clone
an existing git repository.

Importing directory and commit:
git init

git add *.c

git add LICENSE

git commit -m ’initial project version’

Getting a copy of an existing Git repository:

With https:
git clone https://github.com/username/projectname.git

With ssh:
git clone git@github.com:username/projectname.git

Benjamin Roth (CIS LMU München) Version Control with GIT 13 / 30

Checking the Status of Files

After clone:
Clean working directory, there are no tracked and modified files.
$ git status

nothing to commit, working directory clean

After creation of a new (untracked) file:
$ echo ’My Project’ > README

$ git status

Untracked files:

README

Benjamin Roth (CIS LMU München) Version Control with GIT 14 / 30

Staging files: git add

git a
dd

Start tracking a file:
git add README

If a file is modified after staging it will be listed twice:
I Once as staged: exactly as it was at the time of git add
I Once as modified: with the new modifications

Benjamin Roth (CIS LMU München) Version Control with GIT 15 / 30

.gitignore

Ignore a class of files
I do not add
I do not show as untracked
I e.g. binaries, compiled code ...

.gitignore file:
no .a files

*.a

ignore the TODO file in the current directory

/TODO

ignore any build/ (sub)directory

build/

Benjamin Roth (CIS LMU München) Version Control with GIT 16 / 30

Committing Changes

git c
ommit

Only already staged changes will go into a commit:
Changes done after git add will be ignored.
git commit

Will launch default editor: write a meaningful commit message!
$ git commit -m "Story 182: Fix benchmarks for speed"

[master 463dc4f] Story 182: Fix benchmarks for speed

2 files changed, 2 insertions(+)

create mode 100644 README

Command reports back the SHA-1 checksum for this commit
(463dc4f).

Benjamin Roth (CIS LMU München) Version Control with GIT 17 / 30

Add and Commit at the same Time

git c
ommit -a

Skip staging area (-a flag): automatically stage (add) every file that is
already tracked, and commit.
git commit -a -m ’added new benchmarks’

Benjamin Roth (CIS LMU München) Version Control with GIT 18 / 30

Removing and moving files

Files are never deleted from history entirely.

Remove file from working directory and stage its removal (usual case):
git rm README.txt

⇒ Commit after that to make change permanent.

Remove file from tracked files (but keep in working directory, e.g. if
you forgot to add to .gitignore):
git rm --cached README.txt

Rename / move file:
git mv README.md README

Equivalent to:
mv README.md README

git rm README.md

git add README

Benjamin Roth (CIS LMU München) Version Control with GIT 19 / 30

Git diff

Detailed overview of changes in file content, line-by-line (instead of
file-by-file).

git diff

What have you changed but not yet staged?

git diff --staged

What have you staged that you are about to commit?

git d
iff

git d
iff -

-staged

Benjamin Roth (CIS LMU München) Version Control with GIT 20 / 30

Git diff: Example

git d
iff

git d
iff -

-staged

Stage the README file (created previously):

$ git add README

Add to the file:

$ echo ’More text.’ >> README

Compare new changes to staged version:

$ git diff

@@ -1 +1,2 @@

My project

+More text.
Benjamin Roth (CIS LMU München) Version Control with GIT 21 / 30

Viewing the Commit History: git log

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commitBenjamin Roth (CIS LMU München) Version Control with GIT 22 / 30

Viewing the Commit History: Options

Show differences for each commit: git log -p

Show last two commits only: git log -2

Show overview statistics: git log --stat

Only hashes and commit messages: git log --pretty=oneline

Only last two weeks: git log --since=2.weeks

Many more options and combinations:

$ git log --pretty="%h - %s" --author=beroth \

--since="2015-10-01" --before="2015-11-01"

5610e3b - Fix testcase failure when extended attributes are in use

acd3b9e - Enhance hold_lock_file_for_{update,append}() API

f563754 - demonstrate breakage of detached checkout with symbolic link HEAD

Benjamin Roth (CIS LMU München) Version Control with GIT 23 / 30

Undoing Things

You already committed, but forgot to add a file, and/or want to
amend the commit message:

$ git commit -m ’initial commit’

$ git add forgotten_file

$ git commit --amend

You want to unstage a file that you have just staged:

$ git add *

$ git reset HEAD README.txt

Unmodifying a file. You want to revert back to the version of the file
that was last committed:

git checkout -- CONTRIBUTING.md

CAREFUL: All uncommitted modifications are lost irrecoverably!

Benjamin Roth (CIS LMU München) Version Control with GIT 24 / 30

Remote Repositories

Several remote repositories possible: Pushing and pulling from them
vital for collaboration.

If project was initially cloned, one remote repository already exists
called origin:

$ git clone https://github.com/beroth/ticgit

$ git remote -v

origin https://github.com/beroth/ticgit (fetch)

origin https://github.com/beroth/ticgit (push)

Benjamin Roth (CIS LMU München) Version Control with GIT 25 / 30

Remote Repositories

You can add more remote repositories:

$ git remote add mynewremote https://github.com/schacon/ticgit

Fetch all the information from mynewremote:

$ git fetch mynewremote

* [new branch] master -> mynewremote/master

* [new branch] ticgit -> mynewremote/ticgit

The local project now contains a branch mynewremote/master that
can be merged with the local master branch (more on branching
later).

Benjamin Roth (CIS LMU München) Version Control with GIT 26 / 30

git pull and git push

git pull: fetch and merge
→ All staged changes must be committed before merge can happen.

git push: push your changes to remote
→ If the remote had changed in the meantime, you need to pull (and
merge) again.

One can specify the remote and branch, if defaults (e.g. origin and
master) are not appropriate.
git pull <remotename> <branchname>

git push <remotename> <branchname>

show information about remote repository:
git remote show

Benjamin Roth (CIS LMU München) Version Control with GIT 27 / 30

A Typical Workflow
1 Get current project state from remote

I Initially: Clone project.
git clone git@github.com:username/projectname.git

I Later: Fetch and merge changes from remote.
→ Possibly resolve conflicts.
git pull

2 Make changes
I Add a File.

git add CHANGES.txt
I Edit a File.

vi README.txt

3 Add and merge the changes locally.
git commit -a -m "Summary of changes."

4 Fetch and merge changes from remote.
→ Possibly resolve conflicts.
git pull

5 Push changes to remote.
git push

Benjamin Roth (CIS LMU München) Version Control with GIT 28 / 30

Next Lecture

Branches

Merging

Resolving conflicts

GitHub

Pull requests

Benjamin Roth (CIS LMU München) Version Control with GIT 29 / 30

Questions?

Benjamin Roth (CIS LMU München) Version Control with GIT 30 / 30

	Basic Git Concepts
	Practical Usage of Git

