
Homework 1:
Python Basics, DocTests

Benjamin Roth, Marina Sedinkina
Symbolische Programmiersprache

Due: Thursday October 26, 2017, 16:00

In this exercise you will:

• Review some basic Python functionality

• Get some hands-on experience using the python doctest framework

Exercise 1: Setting up the Git project

In order to have access to the Git project with the exercise code, and to be able to submit
your solution, you need to do the following steps (ask the tutors if any of the steps is
unclear to you):

1. Make sure you have a Gitlab account for gitlab.cip.ifi.lmu.de

2. Form teams of 2 or 3 students (4 students are not allowed).

3. Use the web form (which you can find on sp1718.github.io) to provide the fol-
lowing information for your group:

• Gitlab id, name, and matriculation number of each team member

• Your team name will be the concatenation of your Gitlab ids.

4. We will then create a project in Gitlab for you, that will contain the code to the
exercises. Submit your solution by pushing to this project.

5. Please do not create separate files or folders to submit your solution.
Instead, change the files we provided.

6. Important: do NOT change the tests themselves, implement the missing
functionality instead. Changing the tests will result in your exercise
sheet scored with 0 points.

1



Exercise 2: Python Basics

Exercise 2.1: Doctests

Use the doctest module to test your implementation of the functions in the module
hw01_basics.basics.
Run your tests with (this assumes that you are in the src/ directory of your repository):
python3 -m doctest -v hw01_basics/basics.py

Exercise 2.2: Adding Functionality [16 points]

For each function, replace the pass statement, so that the function works properly as
described below and indicated by the doctests.

• hello_world(): Print the string ’Hello, world!’. Use the Python3 Syntax for print.

• expon(x, y): Return the value of x to the power of y.

• dividable(x,y): return True or False wether x is dividable by y. Hint: You
can check, whether the remainder of the division of x by y is 0. You can get the
remainder by the so-called modulo operator.

• hello(name): Print “Hello, ” followed by the content of name.

• wordlength(w): Return the length of the string w. You can use built-in functions.

• caps(w): Return w, but IN ALL CAPS.

• substring(v, w): Return True or False whether v is a substring of w.

• thirdElem(liste): Return the third element of a list.

• lastElem(liste): Return the last element of a list.

• firstHalf(liste): Return the first Half of liste. For uneven-lengthed lists, return
the smaller part. Hint: Use Python3 integer division.

• concatenate(liste1, liste2): Return a list that contains all elements of liste1
followed by all elements of liste2.

• isNegative(k): Return True if k is smaller than 0 and False otherwise.

• printElements(liste): Print each element in liste. You can use a for-loop for
this problem.

• countToZero(k): Print out the numbers counting from k to 0, excluding 0. If k is
negative, count ’up’ to 0, excluding 0. You can use a while-loop for this problem.

2



• noVowels(w): Return True or False whether w contains no vowels. Hint: If you
know regular expressions, use them. Otherwise, you can use a loop and the mem-
bership operator (in) for his problem.

• umlautsAndPunct(w): Return True or False whether w contains umlauts (äöü) and
also a punctuation mark (.!?) at the end.

3


