
Homework 4:
Text as Vectors, Unit Tests

Dr. Benjamin Roth
Symbolische Programmiersprache

Due: Tuesday November 28, 2017, 16:00

In this exercise you will:

• Practice the list comprehensions and dictionary comprehensions in Python

• Review how to represent documents as vectors, and compare similarity

• Get some hands-on experience using the python doctest and unittest frameworks

Exercise 1: List and Dictionary Comprehensions in Python [2.5 points]

In this exercise you will solve 5 Tasks to practice a powerful feature of Python: compre-
hensions. With these, multiple-line for-loop constructions can be expressed in expressive
one-liners.
Solve the following tasks given in comprehensions.py. You can test the funcitonality

of your code calling (from your ./src directory):
python3 -m unittest -v hw04_text_search/test_comprehensions.py

1. Increase each value in orig by 2. [0.5 points]

2. Create a list that contains the squares of all uneven numbers in orig. [0.5 points]

3. Create a list that contains the squares of the uneven numbers and the fivefold (das
Fünffache) of the even numbers in orig. [0.5 points]

4. Create a mapping from the cubes of the values in orig to the values themselves.
[0.5 points]

5. Create a mapping from all elements of wordlist that start with an uppercase letter
to their respective length. [0.5 points]

1



Exercise 2: Search Engine: Running the code

In the source folder for this exercise (src/hw04_text_search/), you will find the classes
to represent documents, and a simple search engine, which were discussed in the lecture
(text_vectors.py). There is also a script to interactively search all *.txt files in a
directory (interactive_search.py). Try to understand what each of the classes are
doing.
On the course homepage, you can find a dataset of corporate emails1, containing sev-

eral folders of spam or normal (ham) emails. Download and unpack it into the src/data/
folder of your project. Run the interactive search on a email folder (always call scripts
from the src/ folder):

python3 -m hw04_text_search.interactive_search --dir data/enron/enron1/ham/

Exercise 3: Doctest and documentation

Exercise 3.1: Doctest [2 points]

Use the doctest module to write tests for the functions dot and normalized_tokens in
the module hw04_text_search.text_vectors.
Run your tests with:
python3 -m doctest -v hw04_text_search/text_vectors.py

Exercise 3.2: Docstrings [5.5 points]

Provide docstring documentation for all member functions (including constructors) of
the classes TextDocument, DocumentCollection and SearchEngine in the same module.

Exercise 4: Extending the program using test-driven development [9 points]

Improve the program by adding additional functionality. Use the unittest framework,
and extend the module hw04_text_search.test_text_search. You should add tests
that initially fail, and only pass once you successfully added the missing functionality.
Have a look at the example for a test given with:

DocumentCollectionTest.test_unknown_word_cosine
This test fails, as you can verify by running:
python3 -m unittest -v hw04_text_search/test_text_search.py

• Make the existing test pass by changing the functionality of
DocumentCollection.cosine_similarity accordingly. [1 point]

• Write 4 additional tests that initially fail, and then pass after some functionality
of (any part of) the initial code has been changed/extended. In order to get full
credits, your test must fail on the initial code, and pass on the changed

1See https://en.wikipedia.org/wiki/Enron_Corpus for the history of this dataset

2



code that you check in. The test must also contain a short docstring
describing what is being tested. [8 points]

You can come up with your own improvements to the code, or you can choose from
the following list (in each case also write the appropriate test):

• The search engine displays text snippets including line break. Change the func-
tionality such that lines are displayed without line breaks.

• Remove the indentation markers of reply emails (e.g. “> > > > ”) (either when
reading or when displaying).

• If several search terms occur in a document, the search engine displays several
text snippets (one for each). Change the code such that only one text snippet is
displayed, if it contains the entire search string.

• Query syntax: if tokens are quoted ("New York"), require that full string occurs in
the document (hint: additionally filter result of docs_with_tokens)

• Snippets should show exact matches of query tokens, not substring matches.

• Files to index should recursively be read from subdirectories.

• When the file path is shown for search result, normalize it so that the full absolute
path is shown.

• If there is no result containing all tokens, search for documents containing at least
one of the tokens.

• If a query contains the same token multiple times, only show one text snippet for
it.

3


