Homework 7:
Unsupervised Learning: Kmeans. Lexical
information

Benjamin Roth, Marina Sedinkina
Symbolische Programmiersprache

Due: Thursday December 21, 2017, 16:00

In this exercise you will:
e use NLTK to perform kmeans clustering

e use NLTK to analyze text and perform its morphological analysis

Exercise 1: Kmeans [5 points]

On the course homepage, you can find the file courses.txt, containing several LMU
courses of studies per line. Download it into the data/ folder of your project. Use NLTK
Kmeans clusterer to cluster LMU courses.

Take a look at hwO7_nltk_kmeans/nltk_kmean.py. In this exercise you will have to
implement some methods to perform the clustering.

This homework will be graded using unit tests by running: python3 -m unittest -v
hwO7_nltk_kmeans/test_kmeans.py

1. Implement the Reader class method get_lines(self, labels). This method
should return the list of courses from the file courses.txt with listed courses, i.e.
one course per line.

2. Implement the Reader class method normalized_word(self, word). This method
should normalize the word by making it lower case and deleting punctuation marks
from it. Hint: you can use set(string.punctuation)

3. Implement the Reader class method get_vocabulary(self). This method should
return vocabulary: the list of unique normalized words from file, sorted alphabeti-
cally. Note: words in vocabulary should be normalized, use normalized_word(self,
word) to do this.



4. Implement the Reader class method vectorspaced(self,course). This method
should represent each course by one-hot vector: vector filled with Os, except for a 1
at the position associated with the word in vocabulary. Note: the length of vector
should be equal to the vocabulary size

5. Implement the KMeans class method nltk_cluster(self,data). This method
should use NLTK KMeansClusterer to cluster the data and return the list of clusters
for given data.

6. Once you have implemented all missing functionality, you can have a look at
run_kmeans.py to see how to use Kmeans in practice. Run the code with:

python3 -m hwO7_nltk_kmeans.run_kmeans

Exercise 2: Lexical information and Morphological Analysis [10 points]

Take a look at ex07/test_analyzer.py. In this exercise you will have to implement
some methods in class Analyzer, that can analyze any text from nltk.book.

This homework will be graded using unit tests by running:

python3 -m unittest -v hwO7_nltk_kmeans/test_analyzer.py

Implement the following methods:

Exercise 2.1: Lexical information
e numberOfTokens(self) — should return the number of tokens in the text
e vocabulary(self) — returns a list of the vocabulary of the text sorted alphabetically.
e vocabularySize(self) — returns the size of the vocabulary.
e lexicalRichness(self) — returns the lexical richness of the text.
e hapaxes(self) — returns all hapaxes of the text
e numberOfHapaxes(self) — returns the number of hapaxes in the text

e avWordLength(self) — returns the average word length of the text.

Exercise 2.2: Morphological Analysis

An important problem in computational linguistics is morphological analysis. This con-
sists of breaking down a word into its component pieces, for example losses might be
broken down as loss + es. In English, morphology is relatively simple and is mostly
comprised of prefixes and suffixes. To get an idea of what suffixes are common in English
(and thus could be morphemes), we can look at the frequencies of the last n characters
of sufficiently long words.

Implement additional methods in class Analyzer, that can perform morphological anal-
ysis:



e topSuffixes (self) - returns top 10 most often seen suffixes of length 2. We define
a n-character suffix as the last n characters of any word of length 5 or more, thus
ignore any word shorter than five characters

e topPrefixes(self) - returns top 10 most often seen prefixes of length 2. We define
a n-character prefix as the first n characters of any word of length 5 or more, thus
ignore any word shorter than five characters

e tokensTypical(self) - returns first 5 tokens of the (alphabetically sorted) vocabulary
that contain both often seen prefixes and often seen suffixes in the corpus



