
Introduction to Python Programming
Introduction to Object-Oriented Programming

Annemarie Friedrich (anne@cis.uni-muenchen.de)
Centrum für Informations- und Sprachverarbeitung LMU München

Software objects represent real-life objects

Object-Oriented Programming (OOP) is a programming paradigm in which the basic
building block is the software object (often just called object). The main idea is to repre-
sent real-life objects as software objects, which combine characteristics (attributes) and
behaviors (methods). For instance, a bank account is a real-life object. Assume we want
to program an application for a bank. Each account is represented by an account object
in our program. If our bank has two customers, say Anne and Stefan, we will use two
account objects, annesAcc and stefansAcc.

Attributes represent data

On the one hand, these two objects will differ in some respects. For instance, Stefan’s
account balance is $1000 while Anne’s account balance is only $200. Also, the objects
will have different account IDs and account holders. The account balance, account
number (=ID) and account holder are specific to each account and describe the state
of an account. We also call the balance, number and holder attributes of the account
object. Attributes are used to represent the data associated with a real-life object. Some
of the attributes may change over time, for instance the account balance can go up or
down depending on whether Anne and Stefan deposit or withdraw money from their
accounts.

``````````````̀Attributes
Object

annesAccount stefansAccount

number 1 2
holder ’Anne’ ’Stefan’

balance 200 1000

Classes are blueprints for objects

Objects are created (instantiated) from a definition called class - programming code that
can define attributes and methods. Classes are like blueprints, they are a design for
objects. By convention, class names should start with a capital letter. In order to create
our account objects, we define an Account class. The class keyword tells Python



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 2

that we are starting to define a class. So far, our class doesn’t contain anything - pass
is a special Python keyword that stands for ’nothing happens here’.

However, we can use this class to create account objects as shown in lines 8 & 9
of the main part of the program. We create new objects of this class by ’calling’ the
class. The dot notation can be used to assign or access (read) attributes as shown in
the example. However, this is not the best way to deal with attributes - we will hear
more about this later.

1 class Account:
2 ''' a class for objects representing an account '''
3 pass
4
5 # Main part of the program
6 if __name__ == "__main__":
7 # Creating objects
8 annesAcc = Account()
9 stefansAcc = Account()

10 # Assigning attributes
11 annesAcc.number = 1
12 annesAcc.holder = "Anne"
13 annesAcc.balance = 200
14 stefansAcc.number = 2
15 stefansAcc.holder = "Stefan"
16 stefansAcc.balance = 1000
17 # Accessing (reading) attributes
18 print("Balance Anne:", annesAcc.balance)
19 print("Balance Stefan:", stefansAcc.balance)

Methods implement behavior

On the other hand, the two account objects have some commonalities, for instance
we can withdraw money from either account or deposit money into either account.
In OOP, such functionalities associated with objects are called behaviors and are pro-
grammed as methods. Methods are essentially functions that belong to a class. We do
not have to write the withdraw(amount) and deposit(amount) methods sepa-
rately for the annesAcc and the stefansAcc objects. Instead, we write the methods
that are shared by all objects of a class once in the class definition, and the methods
will be available for all objects that are created by calling this class. This is one reason
why classes are so terribly useful.

We write an Account class that is a design for account objects, and represent it
using a UML class diagram. Unified Modeling Language (UML) is a visualization stan-
dard used in object-oriented engineering.

Name of the class
Attributes

Methods

Account
id
holder
balance
deposit(amount)
withdraw(amount)

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 3

1 class Account(object):
2 ''' a class for objects representing an account '''
3 # METHODS
4 def withdraw(self, amount):
5 self.balance -= amount
6 def deposit(self, amount):
7 self.balance += amount
8 def print_info(self):
9 print("Balance:", self.balance)

10
11 if __name__ == "__main__":
12 annesAcc = Account()
13 annesAcc.balance = 200
14 annesAcc.deposit(500)
15 annesAcc.withdraw(20)
16 annesAcc.print_info()

The methods deposit(self, amount), withdraw(self, amount) and
print info(self) are instance methods of the Account class. This means that they
are designed to operate on objects that have been created from this class. Technically,
instance methods are required to have a first parameter which is called self (it could
be called something else, too, but self is a very strong convention in Python).

The following image shows that we have an object, annesAcc, which is linked to
the class Account. The balance attribute is only available at the particular object,
but the methods that have been defined in the class are available in the class.

We can call the class’s methods ’on an object’ using the dot notation:
annesAcc.deposit(500). In the code written for the class, however, the method
looks like this: deposit(self, amount). It has two parameters, but we called it
only with one (amount). So why is that?

The following happens here: Python knows that annesAcc is an object of the
Account class (because we created the object by calling the class). Python executes
the deposit(self, amount) method of the Account class and assigns the object
on which the method was called to the self parameter. This means that the following
two lines of code are equivalent:

1 annesAccount.deposit(500)
2 Account.deposit(annesAccount, 500)

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 4

When operating on instance objects, you should always use the first way, because
it leaves the job to look up the class to Python and your code will be more flexible.
This will become clear later when we talk about inheritance.

Constructors are useful for initialization

The code for the class as written above is not very robust. It does not ensure that
the account object actually has a balance attribute before trying to print it out. If
we just add the following two lines of code to the main program, Python gives us an
error, complaining about the fact that we try to print out a balance attribute of the
stefansAcc object, although we never created a balance attribute for this object.

1 stefansAcc = Account()
2 stefansAcc.print_info()

Remember to always make sure that any attribute that your methods try to access
actually exists. In this case, using a constructor method is helpful. In Python, a construc-
tor method is in fact an initialization method.

1 class Account(object):
2 ''' a class representing an account '''
3 # CONSTRUCTOR
4 def __init__(self, num, person):
5 self.balance = 0
6 self.number = num
7 self.holder = person
8 # METHODS
9 ...

10
11 # Main part of the program
12 # Execution starts here!
13 if __name__ == "__main__":
14 annesAcc = Account(1, "Anne")
15 annesAcc.deposit(200)
16 annesAcc.print_info()
17 stefansAcc = Account(2, "Stefan")
18 stefansAcc.deposit(1000)
19 stefansAcc.print_info()

In Python, constructor methods must have the name init (note the two under-
scores at either side), and it must have a self parameter.

When creating an object, such as in line 183, the following happens: Python cre-
ates a new object, annesAcc and then calls the constructor method init (self,
num, person). The values of the parameters num and person are given when creat-
ing the object by calling the class: Account(1, "Anne"). Again, the new annesAcc

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 5

object is automatically assigned to the self parameter, and inside the constructor
method, we can now assign the necessary attributes to the object.

The Python statement annesAcc = Account(1, "Anne") triggers the follow-
ing steps:

1. A new object is created from the Account class and assigned to the variable annesAcc.
2. The constructor method of the Account class is called. In this step, the newly created

object is assigned to the self parameter of the constructor method. So technically,
Python executes Account. init (annesAcc, 1, "Anne").

3. Inside the constructor method, the new object is initialized (the attributes are set to
the given or default values).

In Python, constructor methods do not create an object. You can imagine that the
creation of an object happens ’under the hood’ and the constructor method then just
initializes the attributes of the object. (But this is rather a technical detail - just re-
member that the init (self) method is executed right after an object has been
created.)

Class Design

Generally, when designing a class, you have to ask yourself the following questions:

1. How can I describe the state of my object? This will result in some attributes.
2. What do I know about the object before/when creating it? This goes into the

constructor method.
3. What operations that change the object’s attributes will be performed on the

object? These operations need to be implemented as instance methods.

When designing the Account class, the answers to the above questions are as fol-
lows:

1. The state of an account is described by its account number, account holder
and the current balance.

2. When creating an account, I know the new account number and the holder’s
name. The default balance of an account is 0. We pass the account number
and the holder’s name to the constructor method, and set the default balance
to 0.

3. We will change the balance attribute of the account when withdrawing or
depositing money. Also, a method that prints out all information we have
about the state of the account is useful.

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 6

Manipulate attributes only via instance methods

It was said earlier that assigning a value to an object’s attribute like this is bad style:
stefansAcc.balance = 1000.

In OOP, an important principle is the one of data encapsulation, which means that
the attributes of an object should be ’hidden’ from manipulations from ’outside’ (i.e.
from the code that uses the object). The attributes of an object should only be modified
using code that was written within the class definition. This ensures that the state of
the object is always valid. Imagine, Stefan’s account balance is $1000, and he wants to
withdraw $1500. However, Stefan’s account has the restriction that it may not have a
negative balance. Assume the (human) teller at the bank forgets about this restriction,
sets the balance manually to -$500 and hands the cash to Stefan. You can imagine that
this would make the branch manager of the bank quite unhappy when he realizes that
Stefan’s account is in a state that is not allowed. The withdraw(self, amount)
method modifies the balance attribute, but we can control this manipulation in the
method. For instance, we could prohibit withdrawals that would result in a negative
balance.

1 class Account(object):
2 ''' a class representing an account '''
3 ...
4 # METHODS
5 def withdraw(self, amount):
6 if amount > self.balance:
7 amount = self.balance
8 self.balance -= amount
9 return amount

10 ...
11
12 # Main part of the program
13 if __name__ == "__main__":
14 annesAcc = Account(1, "Anne")
15 annesAcc.deposit(200)
16 print("Trying to withdraw 40:")
17 cash1 = annesAcc.withdraw(40)
18 print("Yeah, I got:", cash1)
19 print("Trying to withdraw 190:")
20 cash2 = annesAcc.withdraw(190)
21 print("Oh no, I only got:", cash2)

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 7

Provide for changing attributes by defining setter methods

Sometimes, an attribute has to be changed completely. Assume, for tax reasons, it
is preferable for Stefan to change the account holder to its wife. Because we said
that assigning a value to an attribute from the outside like stefansAcc.holder =
"Andrea" is bad style, we provide a setter method for this case.

1 class Account(object):
2 ''' a class representing an account '''
3 ...
4 def set_holder(self, person):
5 self.holder = person
6
7 # Main part of the program
8 # Execution starts here!
9 if __name__ == "__main__":

10 stefansAcc = Account(2, "Stefan")
11 stefansAcc.deposit(1000)
12 stefansAcc.set_holder("Andrea")
13 stefansAcc.print_info()

In the above code, the setter method simply sets the object’s attribute to the given
value. This may seem superfluous at the moment, and there are actually other (safer)
ways to do this in Python (keyword: properties). However, for now, we go along with
the Python programming principle of trusting the code that uses your classes and stick
to the following rules in order not to violate the data encapsulation paradigm:

1. Assign values to attributes only via instance methods (setters) or the con-
structor.

2. Modify the values of attributes only via instance methods.
3. Accessing (reading) the value of attributes like

print(stefansAcc.balance) is okay.

So what good is that? For instance, inside the setter methods, we can validate the
new value, or raise an exception if the new value is not valid. The new value for the
account holder attribute has to be a name - or at least a non-empty string that contains
only letters and spaces. We could hence write the setter method like this:

1 def set_holder(self, person):
2 if (not type(person) == str):
3 raise TypeError
4 if not re.match("\W+( \W+)*", person.strip()):
5 raise ValueError
6 self.holder = person

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 8

String representations of objects

Often, it is useful to have a meaningful string representation of an object. If we tell
Python to print an object, for instance print(annesAcc), Python gives the cryptic
answer ”< main .Account object at 0xb74faf4c>”. Instead, we would rather have a
string representation that really tells us what’s going on with the attributes of the ob-
ject, such as the information that the print info(self)method gives us. In Python,
we can simply add an instance method that has the name str (self) (no param-
eters besides self!) to the class. This method must return some string that describes
the object. We can see such a method in the code listing on the following page.

In some cases, Python automatically realizes that we want a string representation
of an object, for instance when calling print(annesAcc) or str(annesAcc), it
automatically calls the str (self) method of this object.

When calling print(annesAcc), it prints out whatever the str (self)method
of the annesAcc object returns; str(annesAcc) returns the string that is returned
by the method call annesAcc. str ().

1 class Account:
2 # METHODS
3 def __str__(self):
4 res = "*** Account Info ***\n"
5 res += "Account ID:" + str(self.number) + "\n"
6 res += "Holder:" + self.holder + "\n"
7 res += "Balance: " + str(self.balance) + "\n"
8 return res
9

10 if __name__ == "__main__":
11 annesAcc = Account(1, "Anne")
12 annesAcc.deposit(200)
13 print(annesAcc)

Hooks are special functions of a class that are called automatically by Python in
some circumstances. The str (self) method is only one example for this. There
is another hook method called repr (self) which is also supposed to return a
string that describes the object. str (self) is supposed to return a user-friendly
description of the object, while repr (self) should return a description that is
useful for developers. Note that print(anObject) returns the string returned by
the str (self) method, while printing an object by just typing it in the interactive
mode returns the string returned by repr (self). Another hook function that
we have seen already is the constructor method ( init (self, args)), which is
called when creating a new object by calling a class. There are also hook methods
that are triggered when operators are applied, for example the operator + triggers the
add method of an object. Note that the names of hook methods usually start and

end with two underscores. We will learn more about hooks later.

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 9

Classes are objects, too

In Python, classes are objects, too. They are created when defining a class using the
class statement. After defining the Account class, exactly one class object for the
Account class becomes available. Each time we call this class (e.g. annesAcc =
Account()), we create a new instance object of this class. The object annesAcc is
automatically linked to the Account class object; we say annesAcc ’is-a’ Account,
because it’s an instance of the Account class.

When we try to access a component (an attribute or a method) of an object us-
ing the dot notation in the way objectName.componentName, Python first looks in
the object itself. Each object can be seen as its own namespace. If Python finds the
componentName there, it is happy. If it doesn’t, it looks in the class object of the class
from which the object was created. If it doesn’t find the componentName there, an
error occurs.

Let’s look at an example. Assume that the Account class has three methods,
withdraw(self, amount), deposit(self, amount) and
print info(self). We created the object annesAcc by calling the Account class,
and then we assigned an attribute to the annesAcc object by writing annesAcc.balance
= 200. The annesAcc object is linked to the class it was created from, as shown in
the image on the next page.

When we use the dot notation in order to access an attribute or a method of the
annesAcc object, Python starts searching for this attribute or component at the object
itself. For example, when accessing the balance attribute (print(annesAcc.balance)),
it finds the attribute right at the object and is happy. Theoretically, you can also define
methods only for particular instances. Practically, methods are always defined within
classes.

We can call the methods ’on an object’ using the dot notation again, like for in-
stance in line 17. Here, Python first looks at the object, but it doesn’t have a method
called deposit(amount). Python then checks the class from which the object was
created, and finds the method there. The deposit(self, amount) method of the
Account class object is then called in a particular way, which we will consider using
our example.

Although the method deposit(self, amount) has two parameters, we only
have to call it with one parameter (the amount of money we intend to deposit). We
have already learned thatt he three methods are so-called instance methods, which
means they should only be called ’on an object’, i.e. in the way:
someObject.method(parameters...).

When we define an instance method (inside a class), the first parameter has to be
called self by convention. When we call the instance method, Python automatically

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 10

assigns the object on which the method was called to this self parameter. So this is
what happens here:

In line 15, we create the object annesAcc from the Account class. The object
annesAcc is linked to the Account class, which provides the three instance methods
mentioned above.

In line 16, we add an attribute called balance to the object annesAcc, and give
it a value of 200. The attribute is only available in this particular object, not to the
Account class or any other objects which we might create from the Account class
later on.

In line 17, we call an instance method of the object annesAcc. The object was cre-
ated from the Account class, so we look for the method being called in this class. The
method was defined as deposit(self, amount), but we pass just one parameter
when calling it (amount). Python automatically associates the annesAcc object with
the parameter self, and we only need to provide the parameters from the second one
in the parameter list on. Inside the deposit method, we have access to the object on
which it was called (annesAcc) via the self variable, and can modify the balance
attribute of this object.

Classes can have attributes, too

We already know that classes are some kind of objects, too. Instances link to the
class object of the class from which they were created, so for example we can use
the deposit(self, amount) method of the Account class to modify any instance
created from the Account class. A class object can also have attributes, which we call
class attributes. In the following example, the Account class has a class attribute called
num of accounts, which records how many accounts were created.

So what exactly happens here? In line 4, we create the class attribute by assigning a
variable called num of accounts in the namespace of the Account class. Note that
the class variable has the same indent as the methods we defined within the class. At
the time when the class object is created, the initial value for the class attribute is set
to 0.

In the constructor method, we modify the num of accounts class attribute. Recall
that the init method is called each time when an instance object is created from
the class. Each time this happens, we increment the num of accounts class attribute.
We access the class attribute by using the class name together with the dot notation:
Account.num of accounts (as shown in lines 10, 16 and 20).

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 11

1 class Account:
2 ''' a class representing an account '''
3 # class attributes
4 num_of_accounts = 0
5 # CONSTRUCTOR
6 def __init__(self, num, person):
7 self.balance = 0
8 self.number = num
9 self.holder = person

10 Account.num_of_accounts += 1
11 # METHODS
12 ...
13
14 # Main part of the program
15 if __name__=="__main__":
16 print(Account.num_of_accounts, "accounts have been created.")
17 annesAcc = Account(1, "Anne")
18 annesAcc.deposit(200)
19 stefansAcc = Account(2, "Stefan")
20 print(Account.num_of_accounts, "accounts have been created."

The image on the previous page shows that the num of accounts attribute re-
sides within the Account class object. So far, we have seen the concept: Class objects
can have attributes, too, and we assign them in the namespace of the class (either in
the class with the correct indent or using ClassName.attributeName). However,
we can also access the class attributes via instance objects that were created from the
class, as the interactive session shows:

1 >>> Account.num_of_accounts
2 2
3 >>> annesAcc.num_of_accounts
4 2
5 >>> stefansAcc.num_of_accounts
6 2

The image on the previous page also explains why that is. As before, Python starts
searching for an attribute in the instance object, if it doesn’t find it, it moves on the
class from which the object was created. Hence, all of the above statements access
the same attribute (the class attribute of the Account class). If it is changed (e.g. by
creating yet another account object), we can see the following output:

1 >>> andreasAcc = Account(3, "Andrea")
2 >>> Account.num_of_accounts
3 3
4 >>> annesAcc.num_of_accounts
5 3
6 >>> stefansAcc.num_of_accounts
7 3

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 12

So far, so good. In the following case, however, it gets tricky and we have to pro-
gram carefully in order to avoid bugs.

1 >>> annesAcc.num_of_accounts = 99
2 >>> Account.num_of_accounts
3 3
4 >>> annesAcc.num_of_accounts
5 99
6 >>> stefansAcc.num_of_accounts
7 3

In line 1, we assign a new instance attribute to the annesAcc object. It just hap-
pens to have the same name as the class attribute. The following image shows that
now, the annesAcc object has an attribute called num of accounts (this attribute
happens to have the value 99). However, the class attribute still resides in Account
class object, and has the value 2. When trying to access the num of accounts at-
tribute of the instance objects or the class object, we now get different results. While
Account.num of accounts and stefansAcc.num of accounts still refer to the
class attribute, annesAcc.num of accounts refer to the new instance attribute of
this object.

An easy way to avoid this pitfall is to give distinct names to your class attributes
and never use the same names for instance attributes.

Static methods belong to a class

So far, we have only seen instance methods, which we define inside a class, but which
we can only call ’on an object’, i.e. when a particular instance is involved. A class can
also have methods that do not involve particular instances, but which are called on
the class object (e.g. see line 12). Such methods are called static methods.

When defining a static method, we need to write @staticmethod in the line be-
fore the def statement for the respective method. @staticmethod is a decorator. For
now, you can imagine that it is a special message you pass to Python, here telling it
that the method you are defining belongs to the class (not to particular objects created
from the class). The method also does not have the self parameter like the instance
methods we have seen before.

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 13

1 class Account:
2 ''' a class representing an account '''
3 # class attributes
4 num_of_accounts = 0
5 ...
6 @staticmethod
7 def accounts_info():
8 print(Account.num_of_accounts, "accounts have been created.")
9

10 if __name__=="__main__":
11 # call a static method
12 Account.accounts_info()

We can also call class methods on objects of the class, for instance
annesAcc.accounts info(). In this case, Python calls the accounts info()
method of the class from which annesAcc was created. It does not pass annesAcc as
an implicit argument as it is done in instance methods using the self parameter. As
you can see, static methods don’t care about particular objects, and the coding style is
better if you call them on the class as in the listing above.

Python also provides a more sophisticated way to define methods that belong to
classes, so-called class methods. These are beyond the scope of this tutorial.

Using classes in other files

Usually, you will write your classes into various files (modules), and you want to use
them in another file which contains your main application. An easy way to be able
to use your class is to write the class definition into a file (module) which we call ac-
counts.py, and then have the main part of your application in another file, here called
bank.py. The bank.py file must then import your classes. Note that the syntax for im-
porting your class is from modulename import classname, where modulename
has to match the file name in which your class is defined (minus the .py) and classname
is the name of your class.

1 from accounts import Account
2
3 if __name__ == "__main__":
4 annesAcc = Account()
5 annesAcc.balance = 200
6 annesAcc.deposit(500)
7 annesAcc.withdraw(20)
8 annesAcc.print_info()

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 14

Composition/Aggregation

Recall that each value in Python has a type, e.g. 1.5 has the type float or ’python’
has the type str (=string). If we create an object, it also has a type, which is the class
from which it was created. We can check the type of an object using the type function:

1 >>> stefansAcc = Account(2, "Stefan")
2 >>> type(stefansAcc)
3 <class '__main__.Account'>

The type of the stefansAcc object is the class from which it was created.
The attributes of an object can be of any type. This means that the attributes of an

object can be objects themselves. In fact, although we haven’t told you so far, anything
is an object in Python, also strings, numbers, lists or dictionaries. The terms composi-
tion and aggregation refer to the fact that we can compose more complex objects out of
multiple objects. Composition implies that the owned objects only exist ’within’ the
more complex object. For instance, if a university is closed, so are all its departments.
Aggregation implies that an object is part of a more complex object, but if the larger ob-
ject is destroyed, the smaller one may still exist. For instance, we can define a Person
class that deals with information about persons, and we save the information about an
account holder in a Person object as shown in the following example. If the account
is closed, the person still exists (and so may its object - a bank might save information
about a former customer even after the customer closed his or her account).

1 class Person:
2 def __init__(self, f, l, a):
3 self.firstname = f
4 self.lastname = l
5 self.age = a
6 def __str__(self):
7 return "[Person: " + self.firstname + " " + \
8 self.lastname + " (" + str(self.age) + ")]"
9

10 class Account:
11 def __init__(self, person, num):
12 self.holder = person
13 self.num = num
14 self.balance = 0
15 def deposit(self, amount):
16 self.balance += amount
17
18 anne = Person("Anne", "Friedrich", 85)
19 annesAcc = Account(anne, 1)

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 15

In UML class diagrams, we can show that one class has an attribute whose type is
another class using a line that connects the two classes. The diamond symbol shows
that the Account class uses the Person class. In the case of composition, the diamond
symbol is filled (black).

Please note that UML class diagrams show the class design, i.e. how objects created
from this class will look like. They show the attributes and methods that will be avail-
able for objects created from this class. UML diagrams do not show what is going on
in Python internally (for this we used the diagrams with the grey boxes). For example,
instance attributes will not be available in the class object, but we list them in the class
diagram. Class attributes and static methods are underlined in UML class diagrams.

Inheritance makes a programmer’s life easier

Inheritance is a central principle in OOP which leverages commonalities and differ-
ences between objects which have to be dealt with in our code. The big advantage,
as we will see, is that inheritance minimizes redundancy (we don’t have to write the
same code over and over again) and thus also facilitates maintenance (if we need to
change something in the code, we need to do it only once, if the functionality is shared
by different classes). This may sound very abstract, so let’s have a look at a concrete
example.

Assume our bank offers two different kind of accounts:

• Savings Account: We record the account number, holder and balance with each ac-
count. The balance has to be ≥ 0. We can apply an interest rate which is defined
once for all savings accounts. Money can be deposited into the account. The account
statement that can be printed includes the account number, holder and balance.

• Checking Account: We record the account number, holder and balance with each
account. The balance has to be greater than or equal to a credit range which is de-
termined on a per-customer basis. For instance, if the credit range determined for
Anne is $500, her balance may not be less than - $500. Money can be deposited into
the account. The account statement that can be printed includes the account number,
holder and balance.

Usually, the development of an application starts with a description of some real-
life objects (such as the accounts) like above. Now, we have to map these descriptions
into an object-oriented design. We can make the following statements about our ap-
plication setting:

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 16

1. Both the savings account and the checking account are some type of account.
2. We can deposit money into either account type.
3. The account statements to be printed out are the same for the two account types.
4. The savings account and the checking account both have the following attributes:

• account number
• account holder
• balance

5. The savings accounts have an additional parameter, the interest rate, but which is the
same for all savings accounts.

6. Savings accounts have a behavior that checking accounts don’t have: We can apply
the interest rate on their balances.

7. Each checking account has its own particular credit range.
8. Cash withdrawal works differently for the two account types. In the savings account,

the balance may not be less than 0, while for checking accounts, the balance may not
be less than the credit range defined for the particular client.

Base classes provide general functionality

All of the above considerations will be reflected in our class design. First of all, we
will code a base class which implements all the things that are shared by the two types
of accounts: the attributes holder, number and balance, methods for deposit and with-
drawal as well as for printing out the state of the account. The following listing shows
our base class, Account, which doesn’t look much different from the previous class.
In fact, we could instantiate objects directly from this class and use them as accounts.

1 class Account:
2 ''' a class representing an account '''
3 # CONSTRUCTOR
4 def __init__(self, num, person):
5 self.balance = 0
6 self.number = num
7 self.holder = person
8 # METHODS
9 def deposit(self, amount):

10 self.balance += amount
11 def withdraw(self, amount):
12 if amount > self.balance:
13 amount = self.balance
14 self.balance -= amount
15 return amount
16 def __str__(self):
17 res = "*** Account Info ***\n"
18 res += "Account ID:" + str(self.number) + "\n"
19 res += "Holder:" + self.holder + "\n"
20 res += "Balance: " + str(self.balance) + "\n"
21 return res

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 17

Derived classes provide for special needs

Let’s turn to the savings accounts. In fact, they are a specialized case of the Account
class we have just written. Next, we are going to write a class called SavingsAccount
which extends the Account class, or is derived from it. This basically means that all
functionality that is available in the Account class is also available in the SavingsAccount
class. We tell Python that the SavingsAccount class is based on the Account class
by starting the class definition with class SavingsAccount(Account). We say
that a derived class/subclass is based on a superclass/base class. This means that anything
that is available in the superclass is also available in the subclass.

1 class SavingsAccount(Account):
2 ''' class for objects representing savings accounts.
3 shows how a class can be extended. '''
4 interest_rate = 0.035
5 # METHODS
6 def apply_interest(self):
7 self.balance *= (1+SavingsAccount.interest_rate)

In our main application, we instantiate two savings accounts.

1 if __name__=="__main__":
2 annesAcc = SavingsAccount(1, "Anne")
3 annesAcc.deposit(200)
4 annesAcc.apply_interest()
5 print(annesAcc)
6
7 stefansAcc = SavingsAccount(2, "Stefan")
8 stefansAcc.deposit(1000)
9 stefansAcc.apply_interest()

10 print(stefansAcc)

The image on the next page shows the class hierarchy and the objects we instantiated
from it.

Note that although the instance attributes balance, number and holder were set in
the constructor of the Account class, they are attributes of the instance objects. We set
them as self.balance, not as Account.balance in the constructor method.

When we apply any instance method on an object, the class hierarchy is searched
from bottom to the top. For instance, we did not define a constructor method in
the SavingsAccount class. Because the SavingsAccount class is based on the
Account class, Python continues looking for an init method at the superclass
(Account), finds it there and executes this method when creating a new object by
calling the SavingsAccount class.

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 18

Even simpler, when calling
annesAcc.deposit(200),
Python starts looking for
a deposit method at the
annesAcc object, but doesn’t
find one there. It then looks at
the class from which the object
was created, which happens
to be SavingsAccount. It
doesn’t find the method there
either, so it continues looking
for the class in the superclass of
SavingsAccount, Account,
where it finally finds the method.
The apply interest(self)
method is found at the
SavingsAccount class, which
means that the search stops here
and executes this method.

Subclasses can override the behavior of their superclasses

Now, we define a class called CheckingAccountwhich is also based on the Account
class. However, the general withdraw(self, amount) method, which we defined
in the Account class and which does not allow a withdrawal to result in a negative
balance, does not apply to checking accounts. Recall that a checking account may have
a negative balance, but only up to a credit range which is defined on a per-customer
basis. The following listing shows how we can redefine/replace, or (as in OOP-speak)
override methods of a superclass in a subclass.

1 class CheckingAccount(Account):
2 ''' class for objects representing checking accounts.
3 shows how methods can be overridden '''
4 # CONSTRUCTOR
5 def __init__(self, num, person, credit_range):
6 print("Creating a checkings account")
7 self.number = num
8 self.holder = person
9 self.balance = 0

10 self.credit_range = credit_range
11 # METHODS
12 def withdraw(self, amount):
13 amount = min(amount, abs(self.balance + self.credit_range))
14 self.balance -= amount
15 return amount

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 19

1 stefansAcc = CheckingAccount(2, "Stefan", 2000)
2 stefansAcc.deposit(1000)
3
4 annesAcc = CheckingAccount(1, "Anne", 500)
5 annesAcc.deposit(200)
6 annesAcc.withdraw(350)
7 print(annesAcc)
8 print("trying to withdraw 400")
9 cash = annesAcc.withdraw(400)

10 print("Got only: ", cash)
11 print(annesAcc)

As we can see, the CheckingAccount
class provides a constructor method
( init ). When creating an object by
calling the CheckingAccount class,
Python starts looking for a constructor
at this class and immediately finds one.
It executes the init method of the
CheckingAccount class and sets the
four attributes of the object being created.
The constructor method of the superclass
Account is not executed in this case.
The CheckingAccount class also over-
rides the withdraw(self, amount)
method of its superclass. Overriding a
method simply works by giving the exact
same name to a method. When we call this
method on the annesAcc object, Python
again starts looking for the method in the
object and then at the classes it is linked to
from bottom to top. It finds the method at
the CheckingAccount class and executes
this method.

Methods with the same name can do different things

We have defined a class hierarchy by now, SavingsAccount and CheckingAccount
are both subclasses of Account. Let us create two objects of these classes as follows:

1 annesAcc = SavingsAccount(1, "Anne")
2 annesAcc.deposit(200)
3 annesAcc.withdraw(350)
4 stefansAcc = CheckingAccount(2, "Stefan", 500)
5 stefansAcc.deposit(1000)
6 stefansAcc.withdraw(300)

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 20

The image below shows the complete class hierarchy and our two account objects.
When creating annesAcc, Python looks for the constructor method in the SavingsAccount
class, doesn’t find on, and moves on to the Account class. It then modifies the newly
created object as coded in the init method of the Account class. When creating
the stefansAcc object, Python finds a constructor method in the CheckingAccount
class and uses this constructor directly to modify the newly created object.

When we apply the deposit method on either the annesAcc or the stefansAcc
object, Python will execute the deposit method of the Account class, because it
doesn’t find a deposit method anywhere lower in the tree.

When we apply the withdraw method on the stefansAcc object, again, Python
finds the method definition in the CheckingAccount class and executes this method.
When we apply withdraw on annesAcc, Python executes the deposit method de-
fined in the Account class.

We just saw an example of polymorphism. The word polymorphism is derived from
the Greek word for ’having multiple forms’. In this case, it means that we can call
a method that has the same name (for instance withdraw) on several objects (here
annesAcc and stefansAcc), and what happens depends on the inheritance hierar-
chy of the classes from which the objects were created. The nice thing here is, at the
point of time when we do the withdrawal, we simply say
accountObject.withdraw(amount) and we don’t need to care about whether the
accountObject is a savings or a checking account. Python knows which inheritance
lines to follow and the desired behavior is produced in either case.

Of course, we could simply have defined the withdraw method twice, once in the
SavingsAccount class and once in the CheckingAccount class. We defined the
method in the superclass here in order to give an example for overriding methods.

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 21

This might even make sense if our bank provides many more types of accounts and in
most of these accounts, the withdrawal works as defined in the Account class. Then,
most of the classes derived from Account simply default to this behavior, while we
can provide special behavior for checking accounts.

Subclasses can extend functionality of superclasses

We said that OOP is great because it helps us to minimize redundancy and thus
makes code maintance easier. Minimizing redundancy means to never write the same
piece of code twice. Compare the constructor methods of our Account class and the
CheckingAccount class, which is derived from it. Here, we just copied and pasted
parts of what is going on inside the constructor method of Account into the construc-
tor method of CheckingAccount.

1 class Account:
2 ''' a class representing an account '''
3 # CONSTRUCTOR
4 def __init__(self, num, person):
5 self.balance = 0
6 self.number = num
7 self.holder = person
8 # METHODS
9 ...

10
11 class CheckingAccount(Account):
12 ''' class for objects representing checking accounts.
13 shows how methods can be overridden '''
14 # CONSTRUCTOR
15 def __init__(self, num, person, credit_range):
16 self.number = num
17 self.holder = person
18 self.balance = 0
19 self.credit_range = credit_range
20 # METHODS
21 ...

As OOP is great, there is of course a better way to do it. We can call the constructor
of a superclass in the constructor of a subclass. In this particular case, it looks like this:

1 class CheckingAccount(Account):
2 ''' class for objects representing checking accounts.
3 shows how methods can be overridden '''
4 # CONSTRUCTOR
5 def __init__(self, num, person, credit_range):
6 Account.__init__(self, num, person)
7 self.credit_range = credit_range
8 # METHODS
9 ...

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 22

In line 6, we call the constructor method of the Account class. Here, we need to
explicitly pass on the self parameter, because we are not calling the method ’on an
object’, but ’on the class’. By passing on the self parameter, Python will know which
object to operate on when it executes the constructor method of the Account class.

In general, we can call any method of a superclass in this way, not only the con-
structor method. For instance, we could implement the withdraw method in a very
general way in the base class, and do all the consistency checking in the subclasses, as
shown in the following example. (In this case, we’re not really saving lines of code,
but in a more complex case, the method in the superclass might be more complex, and
then it really makes sense to structure your code like this.)

1 class Account:
2 def withdraw(self, amount):
3 self.balance -= amount
4
5 class SavingsAccount(Account):
6 # METHODS
7 def withdraw(self, amount):
8 ''' balance must be > 0 '''
9 if amount > self.balance:

10 amount = self.balance
11 cash = Account.withdraw(self, amount)
12 return cash
13
14 class CheckingAccount(Account):
15 ''' class for objects representing checking accounts.
16 shows how methods can be overridden '''
17 # CONSTRUCTOR
18 def __init__(self, num, person, credit_range):
19 Account.__init__(self, num, person)
20 self.credit_range = credit_range
21 # METHODS
22 def withdraw(self, amount):
23 ''' balance must be > credit range '''
24 amount = min(amount,
25 abs(self.balance + self.credit_range))
26 cash = Account.withdraw(self, amount)
27 return cash

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 23

UML Class Diagrams: Inheritance

In UML class diagrams, inheritance is shown by connecting the classes with a line.
The triangle points to the superclass. It is convention to put the superclass on top
of its subclasses (if space allows). Recall that class attributes and static methods are
underlined in UML class diagrams (such as the class attribute interest rate in the
example below.

Classes can have multiple base classes

Unlike other object-oriented programming languages such as Java, Python allows mul-
tiple inheritance. It means that a base class can be derived from more than one class.
When using multiple inheritance, you must be aware of some special mechanisms
(which we are not going to explain here) that define which class’s method is called.
Unless you are an experienced programmer, we recommend that you try not to use
this feature and always base your class on a single class instead.

A few remarks on terminology

For beginners, OOP may seem like extra coding efforts that are not necessary in some
cases. So why is it essential to understand OOP if you want to be a good programmer
these days? The main reason is that you will rarely program from scratch, but by using,
extending and customizing other people’s code. Particularly, you will use frameworks
which are basically collections of superclasses that implement common programming
tasks. Often, you will just have to write a subclass for one of the framework’s classes
that specializes the behavior for you specific application. In fact, extensions in this
way are so common that design patterns have been developed that are recipes for good
ways to extend or leverage classes.

Another issue of confusion is the term data encapsulation, because it is used for two
aspects of OOP. The first, which we introduced in this tutorial, is that data should be
hidden, i.e. only accessed via instance methods, in order to make sure that our object

Annemarie Friedrich, CIS LMU München, WS 2016/2017



INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 24

is in a valid state. The other aspect of OOP that is often described using the term
encapsulation is that OOP helps to wrap up program logic behind interfaces (≈ class
names and the methods of the functions) such that each functionality is only defined
once in a program. When you work with the functionality, you just call the respective
class’s method and you don’t care what happens ’under the hood’. In fact, you can
even change the implementations that happen ’under the hood’ without changing the
code that uses the interface. This can be useful for instance if you suddenly think of
a more efficient implementation of a particular function. All you need to change is
exactly this function.

References

[1] Mark Lutz: Learning Python, Part VI, 4th edition, O’Reilly, 2009.

[2] Michael Dawson: Python Programming for the Absolute Beginner, Chapters 8 & 9, 3rd
edition, Course Technology PTR, 2010.

Annemarie Friedrich, CIS LMU München, WS 2016/2017


