Symbolic Programming

Marina Sedinkina

CIS, LMU marina.sedinkina@campus.lmu.de

January 23, 2018

- 2 NLTK and Lexical Information
- 3 Corpora and Lexical Resources
- 4 WordNet

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

NLP tasks

In most NLP tasks, we are searching for a specific answer to given questions:

- Sentiment Analysis: Is this context positive or rather negative?
- **Text Classification:** is the task of assigning predefined categories to the text documents.
- Language Identification: is the task of automatically detecting the language present in a document.
- Word Sense Disambiguation (WSD): What is the meaning of the word in this context?
- POS tagging: What is the POS tag of the current word?

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classificatior K-Means Clustering

The two camps: Rule-based and Machine Learning

Rule-based:

• Sentiment Analysis: if the context contains words like great, perfect, sunny, then it is positive

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

The two camps: Rule-based and Machine Learning

Rule-based:

- Sentiment Analysis: if the context contains words like great, perfect, sunny, then it is positive
- Text Classification: if the document contains words like *elections, vote, president,* then its category is *politics*

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

The two camps: Rule-based and Machine Learning

Rule-based:

- Sentiment Analysis: if the context contains words like great, perfect, sunny, then it is positive
- Text Classification: if the document contains words like *elections, vote, president,* then its category is *politics*
- Language Identification: if the document contains umlaut, then the language present in a document is German

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

The two camps: Rule-based and Machine Learning

Rule-based:

- Sentiment Analysis: if the context contains words like great, perfect, sunny, then it is positive
- Text Classification: if the document contains words like elections, vote, president, then its category is politics
- Language Identification: if the document contains umlaut, then the language present in a document is German
- WSD: compare the tokens of all possible definitions of the word with its context tokens and pick the meaning with highest overlap (Lesk algorithm)

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

The two camps: Rule-based and Machine Learning

Rule-based:

- Sentiment Analysis: if the context contains words like great, perfect, sunny, then it is positive
- Text Classification: if the document contains words like elections, vote, president, then its category is politics
- Language Identification: if the document contains umlaut, then the language present in a document is German
- WSD: compare the tokens of all possible definitions of the word with its context tokens and pick the meaning with highest overlap (Lesk algorithm)
- POS tagging: if the word ends in ed, label it as a past tense verb

Unsupervised vs. Supervised ML

NLTK and Lexical Information Corpora and Lexical Resources WordNet Web Crawling. POS Tagging Machine Learning

Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

The two camps: Rule-based and ML

However, NLP tasks can be solved without having to apply a predefined set of rules. We used a **machine learning approach**.

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

Machine Learning

Machine learning is tightly connected to artificial intelligence:

- to understand, design and improve the algorithms that can be used to build a system that is capable of learning from big amounts of data → to develop models
- making autonomous decisions about new/unseen data using these models

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

Unsupervised ML: Clustering

no label given, purely based on the given raw data \rightarrow find common structure in data

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classificatior K-Means Clustering

Supervised ML: Classification

data labeled with the correct answers to learn from

<ロト < 四ト < 三ト < 三ト

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classificatior K-Means Clustering

Classification

Classification:

- choose the correct label (class)
- select the class from a predefined set
- base the decision on specific information collected for each example (so called features)

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classificatior K-Means Clustering

Classification. Example

Text Classification:

- choose the correct category of the document
- the category is selected from a given set of categories
- base the decision on the features for this document
- features are numerical statistics (TF-IDF) from document

Machine Learning Unsupervised ML Supervised ML **TF-IDF statistics** K Nearest Neighbors Classification K-Means Clustering

TF-IDF statistics

1 Document Set: 2 d1: The sky is blue. 3 d2: The sun is bright, the bright sky 4 5 #ignore stopwords and create vocabulary ("blue"

$$E(t) = \begin{cases} "sun" \\ "sun" \\ "bright" \\ "sky" \end{cases}$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

э

Machine Learning Unsupervised ML Supervised ML **TF-IDF statistics** K Nearest Neighbors Classification K-Means Clustering

TF-IDF statistics

Document Set:
 d1: The sky is blue.
 d2: The sun is bright, the bright sky
 #ignore stopwords and create vocabulary E(t)

$$E(t) = \begin{cases} "blue" \\ "sun" \\ "bright" \\ "sky" \\ tf(t,d) = \frac{\sum_{x \in d} fr(x,t)}{\max_{t' \in d} tf(t',d)}, \quad fr(x,t) = \begin{cases} 1, & \text{if } x = t \\ 0, & \text{otherwise} \end{cases}$$

<ロト < 四ト < 回ト < 回ト < 回ト <</p>

э

Machine Learning Unsupervised ML Supervised ML **TF-IDF statistics** K Nearest Neighbors Classification K-Means Clustering

TF-IDF statistics

Document Set:
 d1: The sky is blue.
 d2: The sun is bright, the bright sky.

Vocabulary E(*t*) contains {blue,sun,bright,sky} tf(*t*,*d*) = $\frac{\sum_{x \in d} fr(x,t)}{\max_{t' \in d} tf(t',d)}$, fr(*x*,*t*) = $\begin{cases} 1, & \text{if } x = t \\ 0, & \text{otherwise} \end{cases}$ $\vec{v_{d_n}} = (tf(t_1, d_n), tf(t_2, d_n), tf(t_3, d_n), \dots, tf(t_n, d_n))$ $\vec{v_{d_2}} = (tf(t_1, d_2), tf(t_2, d_2), tf(t_3, d_2), \dots, tf(t_n, d_2))$

???

 $\vec{v_{d_2}} = (???)$

Machine Learning Unsupervised ML Supervised ML **TF-IDF statistics** K Nearest Neighbors Classification K-Means Clustering

TF-IDF statistics

1 Document Set: 2 d1: The sky is blue. 3 d2: The sun is bright, the bright sky.

Vocabulary E(t) contains {blue,sun,bright,sky}

$$tf(t,d) = \frac{\sum_{x \in d} fr(x,t)}{\max_{t' \in d} tf(t',d)}, \quad fr(x,t) = \begin{cases} 1, & \text{if } x = t \\ 0, & \text{otherwise} \end{cases}$$
$$\vec{v_{d_n}} = (tf(t_1, d_n), tf(t_2, d_n), tf(t_3, d_n), \dots, tf(t_n, d_n))$$
$$\vec{v_{d_2}} = (tf(t_1, d_2), tf(t_2, d_2), tf(t_3, d_2), \dots, tf(t_n, d_2))$$

???

 $\vec{v_{d_2}} = (0\ 0.5\ 1\ 0.5)$

Machine Learning Unsupervised ML Supervised ML **TF-IDF statistics** K Nearest Neighbors Classification K-Means Clustering

TF-IDF statistics

Document Set:
 d1: The sky is blue.
 d2: The sun is bright, the bright sky

Vocabulary E(*t*) contains {blue,sun,bright,sky} tf(*t*,*d*) = $\frac{\sum_{x \in d} fr(x,t)}{\max_{t' \in d} tf(t',d)}$, fr(*x*,*t*) = $\begin{cases} 1, & \text{if } x = t \\ 0, & \text{otherwise} \end{cases}$ $\vec{v_{d_n}} = (tf(t_1, d_n), tf(t_2, d_n), tf(t_3, d_n), \dots, tf(t_n, d_n))$ $\vec{v_{d_1}} = (tf(t_1, d_1), tf(t_2, d_1), tf(t_3, d_1), \dots, tf(t_n, d_1))$

tf

 $\vec{v_{d_1}} = (???)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Machine Learning Unsupervised ML Supervised ML **TF-IDF statistics** K Nearest Neighbors Classification K-Means Clustering

TF-IDF statistics

1 Document Set:

- 2 d1: The sky is blue. 3 d2: The sun is bright
- 3 d2: The sun is bright, the bright sky.

Vocabulary E(t) contains {blue,sun,bright,sky} idf(t) = $\log_{10} \frac{|D|}{df_t}$, tf-idf(t) = tf(t, d) × idf(t) idf(t = blue) = $\log_{10} \frac{|D|}{df_t} = \log_{10} \frac{2}{1} \sim 0.3$ idf(t = sun) = $\log_{10} \frac{|D|}{df_t} = \log_{10} \frac{2}{1} \sim 0.3$ idf(t = bright) = $\log_{10} \frac{|D|}{df_t} = \log_{10} \frac{2}{1} \sim 0.3$ idf(t = sky) = $\log_{10} \frac{|D|}{df_t} = \log_{10} \frac{2}{2} = 0$

tf-idf

$$\vec{v_{d_2}} = (0^*0.3\; 0.5^*0.3\; 1^*0.3\; 0.5^*0) = (0\; 0.15\; 0.3\; 0\;)$$

16/55

Machine Learning Unsupervised ML Supervised ML **TF-IDF statistics** K Nearest Neighbors Classification K-Means Clustering

TF-IDF statistics

1 Document Set:

- 2 d1: The sky is blue. 3 d2: The sun is bright
- 3 d2: The sun is bright, the bright sky.

Vocabulary E(t) contains {blue,sun,bright,sky} idf(t) = $\log_{10} \frac{|D|}{df_t}$, tf-idf(t) = tf(t, d) × idf(t) idf(t = blue) = $\log_{10} \frac{|D|}{df_t} = \log_{10} \frac{2}{1} \sim 0.3$ idf(t = sun) = $\log_{10} \frac{|D|}{df_t} = \log_{10} \frac{2}{1} \sim 0.3$ idf(t = bright) = $\log_{10} \frac{|D|}{df_t} = \log_{10} \frac{2}{1} \sim 0.3$ idf(t = sky) = $\log_{10} \frac{|D|}{df_t} = \log_{10} \frac{2}{2} = 0$

tf-idf

 $\vec{v_{d_1}} = (???)$

Machine Learning Unsupervised ML Supervised ML **TF-IDF statistics** K Nearest Neighbors Classification K-Means Clustering

TF-IDF statistics

- $\mathbf{tf} \rightarrow$ the weight how import the term in the document
- idf → diminishes the weight of terms that occur very frequently in the document set and increases the weight of terms that occur rarely
- tf-idf \rightarrow the product of two statistics

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K Nearest Neighbors Classification

Classification rule

イロト イロト イヨト イヨト

э

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K Nearest Neighbors Classification

Classification rule

classify a new object

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K Nearest Neighbors Classification

Classification rule

- classify a new object
- find the object in the training set that is most similar

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K Nearest Neighbors Classification

Classification rule

- classify a new object
- find the object in the training set that is most similar
- assign the category of this nearest neighbor

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K Nearest Neighbors Classification

Classification rule

- classify a new object
- find the object in the training set that is most similar
- assign the category of this nearest neighbor

• Generalization: take k closest neighbors instead of one

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K Nearest Neighbors Classification

Classification rule

- classify a new object
- find the object in the training set that is most similar
- assign the category of this nearest neighbor
- Generalization: take k closest neighbors instead of one
- Cosine similarity can be used to measure similarity between objects

$$cos(ec{q},ec{d}) = rac{ec{q}*ec{d}}{ec{q}|*ec{d}ec{q}|} = rac{\sum_{i=1}^V q_i*d_i}{ec{q}|*ec{d}ec{q}|}$$

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K Nearest Neighbors Classification

Classification rule

- classify a new object
- find the object in the training set that is most similar
- assign the category of this nearest neighbor
- Generalization: take k closest neighbors instead of one
- Cosine similarity can be used to measure similarity between objects

$$cos(ec{q},ec{d}) = rac{ec{q}*ec{d}}{ec{q}|*ec{d}|} = rac{\sum_{i=1}^V q_i*d_i}{ec{q}|*ec{d}|}$$

• Objects are represented by vectors (feature vectors)

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K Nearest Neighbors Classification

Classification rule

- classify a new object
- find the object in the training set that is most similar
- assign the category of this nearest neighbor
- Generalization: take k closest neighbors instead of one
- Cosine similarity can be used to measure similarity between objects

$$cos(ec{q},ec{d}) = rac{ec{q}*ec{d}}{ec{ec{q}}ec{ec{d}}ec{ec{d}}ec{ec{q}} = rac{\sum_{i=1}^V q_i*d_i}{ec{ec{q}}ec{ec{v}}ec{ec{ec{q}}}ec{ec{d}}ec{ec{d}}ec{ec{ec{d}}}ec{ec{ec{d}}}ec{ec{ec{q}}}ec{ec{ec{d}}}ec{ec{ec{q}}}ec{ec{ec{q}}}ec{ec{ec{q}}}ec{ec{ec{q}}}ec{ec{ec{q}}}ec{ec{ec{q}}}ec{ec{ec{q}}}ec{ec{ec{q}}}ec{ec{ec{q}}}ec{ec{ec{ec{q}}}ec{ec{ec{q}}}ec{ec{ec{ec{q}}}}ec{ec{ec{ec{q}}}ec{ec{ec{ec{q}}}}ec{ec{ec{ec{q}}}ec{ec{ec{ec{ec{q}}}}ec{ec{ec{ec{ec{ec{v}}}}ec{ec{ec{ec{v}}}}ec{ec{ec{ec{v}}}ec{ec{ec{ec{v}}}}ec{ec{ec{ec{ec{v}}}}ec{ec{ec{ec{v}}}}ec{ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{ec{v}}}}ec{ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{ec{v}}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}ec{ec{v}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}ec{ec{v}}}ec{ec{ec{v}}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{v}}ec{ec{v}}}ec{ec{v}}ec{v}}ec{ec{v}}ec{ec{v}}ec{v}}ec{ec{v}}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{v}}ec{ec{v}}ec{v}}ec{ec{v}}ec{ec{v}}ec{v}}ec{v}}ec{ec{v}}ec{v}}ec{ec{v}}ec{v}}ec{v}}ec{ec{v}}ec{v}}ec{v}}ec{ec{v}}ec{v}}ec{ec{v}}ec{v}}ec{v}}ec{ec{v}}ec{ec{v}}ec{v}}ec{ec{v}}ec{ec{v}}}ec{ec{v}}ec{v}}ec{v}}ec{v}}ec{ec{v}}ec{v}}ec{ec{v}}ec{v}}ec{v}}ec{v}ec{v}}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}}ec{v}ec{v}ec{v}}ec{v}e$$

- Objects are represented by vectors (feature vectors)
- Feature vectors of documents are TF-IDF statistics and cosine similarity is an indicator how close the documents are in the semantics of their content

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

Cosine similarity

Cosine similarity can be used to measure similarity between objects $cos(\vec{q}, \vec{d}) = \frac{\vec{q} * \vec{d}}{|\vec{q}| * |\vec{d}|} = \frac{\sum_{i=1}^{V} q_i * d_i}{|\vec{q}| * |\vec{d}|}$

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K-Means Clustering

Goal: find similarities in the data points and group similar data points together

- randomly initialize cluster centroids
- assign each point to the centroid to which it is closest
- recompute cluster centroids
- go back to 2 until nothing changes (or it takes too long)

★ ∃ >

Machine Learning Unsupervised ML Supervised ML TF-IDF statistics K Nearest Neighbors Classification K-Means Clustering

K-nearest neighbors vs. K-Means

- K-means is a clustering algorithm → partitions points into K clusters: points in each cluster tend to be near each other
- K-means is a **unsupervised** algorithm \rightarrow points have no external classification
- K-nearest neighbors is a classification algorithm \rightarrow determines the classification of a new point
- K-nearest neighbors is a supervised algorithm → classifies a point based on the known classification of other points.

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Basic Text Statistics

- len(text) extract the number of tokens (the technical name for a sequence of characters. It can be a word but also punctuation symbol or smiles from chat corpus) in text
- len(set(text)) extract the number of unique tokens (types) in text (vocabulary of text). You can also use nltk.text.Text.vocab().
- sorted(set(text)) extract the number of item types in text in sorted order
- len(text) / len(set(text)) lexical richness of the
 text
- sum([len(w) for w in text])/len(text) average word length

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Brown Corpus Statsistics

Genre	Tokens	Types	Lexical diversity
skill and hobbies	82345	11935	6.9
humor	21695	5017	4.3
fiction: science	14470	3233	4.5
press: reportage	100554	14394	7.0
fiction: romance	70022	8452	8.3
religion	39399	6373	6.2

Lexical diversity is slightly higher in press:reportage and fiction:romance but it contains over double as many words than e.g. in religion and humor genres.

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Brown Corpus Statsistics

Frequencies of model verbs in the Brown Corpus:

	can	could	may	might	mus	t will
news	93	86	66	38	50	389
religion	82	59	78	12	54	71
hobbies	268	58	131	22	83	264
<pre>science_fiction</pre>	16	49	4	12	8	16
romance	74	193	11	51	45	43
humor	16	30	8	8	9	13

Observe that the most frequent modal in the news genre is **will**, while the most frequent modal in the romance genre is **could**. Would you have predicted this?
Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Brown Corpus Statsistics

- hapaxes: words that only occur once in the text
- hapaxes in the Brown Corpus: ...'Ashley', 'Ashikaga', 'Asher', ...

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Lexical Dispersion Plots

- Location of a word in the text can be displayed using a dispersion plot
- Dispersion plots are good for **diachronic language studies** (the exploration of natural language when time is considered as a factor)

Diachronic Language Studies

Diachronic Language Studies

>>> from nltk.book import * text4.dispersion_plot(["citizens", "democracy", "freedom", "duties", "America"])

Lexical Dispersion Plot

Language Processing and Python 28/55

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Diachronic Language Studies

<ロト < 四ト < 三ト < 三ト

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Diachronic Language Studies. Conditional Frequency Distributions (CFD)

```
1 import nltk
2 from nltk.corpus import inaugural
3
4 cfd = nltk.ConditionalFreqDist((w, fileid[:4])
5 for fileid in inaugural.fileids()
6 for w in inaugural.words(fileid)
7 for target in ["american", "citizen"]
8 if w.lower().startswith(target))
9 print(cfd.plot())
```

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Diachronic Language Studies

- 8 conditions: "American","Americanism","Americans",...
- for each condition we create a frequency distribution over the years

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Diachronic Language Studies

How many conditions will be generated here?

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

CFD: Generating Random Text

We treat each word as a condition, and for each one we create a frequency distribution over the following words

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

CFD: Generating Random Text

import nltk

```
3 text = nltk.corpus.genesis.words("english-kjv.txt")
4 bigrams = nltk.bigrams(text)
5 cfd = nltk.ConditionalFreqDist(bigrams)
6
7 print(list(cfd["living"]))
8 >>>['creature', 'thing', 'soul', '.', 'substance', ',']
9
10 print(list(cfd["living"].values()))
11 >>> [7, 4, 1, 1, 2, 1]
12
13 print(cfd["living"].max())
14 >>> creature
```

Most likely token in that context is "creature"

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

CFD: Language Identification

```
import nltk
from nltk.corpus import udhr
def build language models(list param, dict param):
    return nltk.ConditionalFreqDist((language, char_bigram)
                  for language in list param
                  for word in dict_param[language]
                  for char bigram in nltk.bigrams(word.lower()))
languages = ['English', 'German_Deutsch']
language base = dict((list item, udhr.words(list item + '-Latin1')
    ) for list item in languages)
language model cfd = build language models(languages,
    language base)
text1 = "Peter had been to the office before they arrived."
text2 = "Das ist ein schon recht langes deutsches Beispiel."
print(guess lang(language model cfd, text1))
print(guess_lang(language_model_cfd, text2))
```

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

CFD: Language Identification

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Language Guesser Task

- The distribution of characters in a languages of the same language family is usually not very different.
- Thus, it is difficult to differentiate between those languages using a unigram character model → use bigram models.

Letters Frequencies in Different Latin Languages

Basic Text Statistics Diachronic Language Studies Conditional Frequency Distributions Collocations and Bigrams

Collocations and Bigrams

Bigrams are a list of word pairs extracted from a text

 A collocation is a sequence of words that occur together unusually often: essentially just frequent bigrams (*red wine*, United States)

Corpora Lexical Resources (Lexicon)

Corpora Structure

<ロト < 四ト < 三ト < 三ト

э

Corpora Lexical Resources (Lexicon

Corpora Structure

Corpora are designed to achieve specific goal in NLP:

- Brown Corpus: resource for studying systematic differences between genres (*stylistics*) → type of categorized structure
- Reuters Corpus: designed to detect the topic of a document \rightarrow type of overlapping structure
- Chat Corpus: used for *author profiling* problem (applications in criminal investigation, security, and marketing) → type of isolated structure
- Inaugural Adress Corpus: used for *diachronic language studies* → type of temporal structure

イロト 不得 トイヨト イヨト

Corpora Lexical Resources (Lexicon)

Lexical Resources (Lexicon)

Lexical resource, or lexicon, is a collection of words and/or phrases along with associated information (part-of-speech, sense definitions):

vocab = sorted(set(my_text)) - builds the vocabulary of my_text

Corpora Lexical Resources (Lexicon)

Lexical Resources (Lexicon)

Lexical resource, or lexicon, is a collection of words and/or phrases along with associated information (part-of-speech, sense definitions):

- vocab = sorted(set(my_text)) builds the vocabulary of my_text
- word_freq = FreqDist(my_text) counts the frequency of each word in the text

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corpora Lexical Resources (Lexicon)

Lexical Resources (Lexicon)

Lexical resource, or lexicon, is a collection of words and/or phrases along with associated information (part-of-speech, sense definitions):

- vocab = sorted(set(my_text)) builds the vocabulary of my_text
- word_freq = FreqDist(my_text) counts the frequency of each word in the text
- con_freq = ConditionalFreqDist(list_of_tuples) calculates conditional frequencies

• □ • • @ • • Ξ • • Ξ • ·

Corpora Lexical Resources (Lexicon)

Lexical Resources (Lexicon)

Lexical resource, or lexicon, is a collection of words and/or phrases along with associated information (part-of-speech, sense definitions):

- vocab = sorted(set(my_text)) builds the vocabulary of my_text
- word_freq = FreqDist(my_text) counts the frequency of each word in the text
- con_freq = ConditionalFreqDist(list_of_tuples) calculates conditional frequencies
- Word lists

Corpora Lexical Resources (Lexicon)

Lexical Resources (Lexicon)

Lexical resource, or lexicon, is a collection of words and/or phrases along with associated information (part-of-speech, sense definitions):

- vocab = sorted(set(my_text)) builds the vocabulary of my_text
- word_freq = FreqDist(my_text) counts the frequency of each word in the text
- con_freq = ConditionalFreqDist(list_of_tuples) calculates conditional frequencies
- Word lists
 - nltk.corpus.stopwords \rightarrow to filter out words with little lexical content such as **the**, **to**, **a**

Corpora Lexical Resources (Lexicon)

Lexical Resources (Lexicon)

Lexical resource, or lexicon, is a collection of words and/or phrases along with associated information (part-of-speech, sense definitions):

- vocab = sorted(set(my_text)) builds the vocabulary of my_text
- word_freq = FreqDist(my_text) counts the frequency of each word in the text
- con_freq = ConditionalFreqDist(list_of_tuples) calculates conditional frequencies
- Word lists
 - nltk.corpus.stopwords \rightarrow to filter out words with little lexical content such as **the**, **to**, **a**
 - $\mathit{nltk.corpus.names} \rightarrow \textbf{Anaphora Resolution}$

Corpora Lexical Resources (Lexicon)

Lexical Resources (Lexicon)

Lexical resource, or lexicon, is a collection of words and/or phrases along with associated information (part-of-speech, sense definitions):

- vocab = sorted(set(my_text)) builds the vocabulary of my_text
- word_freq = FreqDist(my_text) counts the frequency of each word in the text
- con_freq = ConditionalFreqDist(list_of_tuples) calculates conditional frequencies
- Word lists
 - nltk.corpus.stopwords \rightarrow to filter out words with little lexical content such as **the**, **to**, **a**
 - $\mathit{nltk.corpus.names} \rightarrow \textbf{Anaphora Resolution}$
 - *nltk.corpus.swadesh* \rightarrow measure the difference between languages

Corpora Lexical Resources (Lexicon)

Lexical Resources (Lexicon)

Lexical resource, or lexicon, is a collection of words and/or phrases along with associated information (part-of-speech, sense definitions):

- vocab = sorted(set(my_text)) builds the vocabulary of my_text
- word_freq = FreqDist(my_text) counts the frequency of each word in the text
- con_freq = ConditionalFreqDist(list_of_tuples) calculates conditional frequencies
- Word lists
 - nltk.corpus.stopwords \rightarrow to filter out words with little lexical content such as **the**, **to**, **a**
 - $nltk.corpus.names \rightarrow Anaphora Resolution$
 - $nltk.corpus.swadesh \rightarrow$ measure the difference between languages
 - *nltk.corpus.words* \rightarrow to find unusual or misspelt words in a text

Lesk Algorithm Preprocessing

WordNet

WordNet is semantically-oriented lexical database of English where words (nouns, verbs, adjectives, etc.) are grouped into sets of synonyms (synsets), each expressing a distinct concept.

Lesk Algorithm Preprocessing

WordNet Relations

synonymy

1 >>> wn.synset("car.n.01").lemma_names()
2 ["car", "auto", "automobile", "machine", "
 motorcar"]

 super-subordinate relation (hyperonymy/hyponymy or is-a relation) → links general synsets like car to specific ones like ambulance or bus

```
1 >>> wn.synset("car.n.01").hyponyms()
2 [Synset('ambulance.n.01'), Synset('beach_wagon.n.
01'), Synset('bus.n.04'), ...
```

Lesk Algorithm Preprocessing

WordNet Relations

synonymy

- super-subordinate relation (hyperonymy/hyponymy or is-a relation) → links general synsets like car to specific ones like ambulance or bus
- meronymy → the part-whole relation holds between synsets like tree and trunk, crown, limb
- \bullet relationships between verbs $\rightarrow \texttt{walk}$ entails <code>step</code>
- antonymy \rightarrow supply vs demand

イロト 不得 トイヨト イヨト

Lesk Algorithm Preprocessing

Lesk Algorithm

- classical algorithm for Word Sense Disambiguation (WSD) introduced by Michael E. Lesk in 1986
- idea: word's dictionary definitions are likely to be good indicators for the senses they define

Lesk Algorithm Preprocessing

Lesk Algorithm: Example

Sense	Definition		
<mark>s1</mark> : tree	a tree of the olive family		

s2: burned stuff the solid residue left when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense definition and context

Scores		Context			
<mark>s1</mark> s2	The ash is	one of the last trees			
<mark>1</mark> 0	to c	come into leaf			
				æ	୬ବ୍ଦ
	Marina Sedinkina	Language Processing and Python	46/55		

Lesk Algorithm Preprocessing

Lesk Similarity

```
import string
   def lesk similarity (synset1, synset2):
        punctuation = string.punctuation
4
        #find tokens of wordnet definition of svnset1
        definition_words1 = [word for word in nltk.word_tokenize(
            synset1.definition()) if word not in punctuation]
        #find tokens of wordnet definition of svnset2
        definition_words2 = [word for word in nltk.word_tokenize(
            synset2.definition()) if word not in punctuation]
        #calculate maximum matching number
        max match = min(len(definition words1), len(definition words2))
        #find overlap in definitions. consider words occuring twice
        overlap = 0
        for word in definition words1:
            if word in definition words2:
14
                overlap += 1
                definition words2.remove(word)
        return overlap/max_match #normalize to allow fair comparison
    lesk similarity(wn.synset('car.n.01'),wn.synset('wheel.n.01'))
```

Lesk Algorithm Preprocessing

Semantic Similarity

You can use similarity measures defined over the collection of WordNet

- path_similarity() assigns a score in the range 0-1 based on the shortest path that connects the concepts in the hypernym hierarchy
- 1 >>> right.path_similarity(minke)
- 2 0.25
- 3 >>> right.path_similarity(orca)
- 4 0.166666666666666666
- 5 >>> right.path_similarity(tortoise)
- 6 0.076923076923076927
- 7 >>> right.path_similarity(novel)
- 8 0.043478260869565216

Lesk Algorithm Preprocessing

Preprocessing Steps

- Tokeniziation \rightarrow breaking raw text into its building parts: words, phrases, symbols, or other meaningful elements called tokens
- Punctuation removal
- Lowecasing
- Stemming \rightarrow removing morphological affixes from words, leaving only the word stem (may not be a real word)
- Lemmatization → removing morphological affixes from words, leaving only lemmas (lemma is a canonical form of the word)

```
1 import nltk
2 print(nltk.LancasterStemmer().stem("colors"))
3 # prints col
4 print(nltk.WordNetLemmatizer().lemmatize("colors"))
5 # prints color
```

Stopword removal

Web Crawling POS Tagging

Web Crawling

- $\bullet~\mbox{Urllib} \to a$ high-level interface for fetching data across the World Wide Web
- Beautiful Soup \rightarrow Python library for pulling data out of HTML and XML files

```
1 import nltk
2 import urllib
3 import bs4
4
5 def get_text(url):
6     html = urllib.request.urlopen(url).read().decode("utf-8")
7     return bs4.BeautifulSoup(html).get_text()
8
9 raw=get_raw("http://www.bbc.com/news/world-middle-east-42412729")
```

Web Crawling POS Tagging

POS Tagging Overview

- parts-of-speech (POS) → word class, lexical categorys e.g. verb, noun, adjective, etc.
- part-of-speech tagger \rightarrow labels words according to their POS
- tagset the collection of tags used for a particular task

Web Crawling POS Tagging

POS Tagging

POS Tagging allows

- find likely words for a given tag
- extract most ambiguous words across the word classes

(日) (同) (日) (日) (日)

Web Crawling POS Tagging

POS Tagging

You want to count how many sentences in a corpus contain a form of the verb have. Which steps are necessary to obtain a reliable count?

(日) (同) (日) (日) (日)

Web Crawling POS Tagging

POS Tagging

You want to count how many sentences in a corpus contain a form of the verb have. Which steps are necessary to obtain a reliable count?

Get tagged sentences (e.g. from a pre-tagged corpus or tag words using NLTK tagger nltk.pos_tag)

(日) (同) (日) (日) (日)
Web Crawling POS Tagging

POS Tagging

You want to count how many sentences in a corpus contain a form of the verb have. Which steps are necessary to obtain a reliable count?

- Get tagged sentences (e.g. from a pre-tagged corpus or tag words using NLTK tagger nltk.pos_tag)
- Use NLTK lemmatizer to get lemma of each token in each sentence

(日) (同) (日) (日) (日)

Web Crawling POS Tagging

POS Tagging

You want to count how many sentences in a corpus contain a form of the verb have. Which steps are necessary to obtain a reliable count?

- Get tagged sentences (e.g. from a pre-tagged corpus or tag words using NLTK tagger nltk.pos_tag)
- Use NLTK lemmatizer to get lemma of each token in each sentence
- Iterate through the sentences

(日) (同) (日) (日) (日)

Web Crawling POS Tagging

POS Tagging

You want to count how many sentences in a corpus contain a form of the verb have. Which steps are necessary to obtain a reliable count?

- Get tagged sentences (e.g. from a pre-tagged corpus or tag words using NLTK tagger nltk.pos_tag)
- Use NLTK lemmatizer to get lemma of each token in each sentence
- Iterate through the sentences
- Count those sentences, which contain at least one word with lemma "have" and pos-tag "verb".

(日) (同) (日) (日) (日)

Web Crawling POS Tagging

References

http://www.nltk.org/book/

- https://github.com/nltk/nltk
- Christopher D. Manning, Hinrich Schütze 2000. Foundations of Statistical Natural Language Processing. The MIT Press Cambridge, Massachusetts London, England. http://ics.upjs.sk/~pero/web/documents/ pillar/Manning_Schuetze_StatisticalNLP.pdf