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@ What Is Machine Learning?

© Supervised Learning: Classification

9 Unsupervised Learning: Clustering

@ Supervised: K Nearest Neighbors Algorithm

© Unsupervised: K-Means
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What Is Machine Learning?

e Modeling: model - specification of a mathematical (or probabilistic)
relationship that exists between different variables.
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What Is Machine Learning?

e Modeling: model - specification of a mathematical (or probabilistic)
relationship that exists between different variables.

o business model: number of users, profit per user, number of
employees = profit is income minus expenses

o poker model: the cards that have been revealed so far, the
distribution of cards in the deck = win probability

o language model in NLP: a probability that a string is a member of a
language (originally developed for the problem of speech recognition)

@ Machine Learning - creating and using models that are learned from
data (predictive modeling or data mining)
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What Is Machine Learning?

@ Goal - use existing data to develop models for predicting various
outcomes for new data
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What Is Machine Learning?

@ Goal - use existing data to develop models for predicting various
outcomes for new data
e Predicting whether an email message is spam or not
e Predicting which advertisement a shopper is most likely to click on
o Predicting which football team is going to win

Examples in NLP:

o Speech Recognition

o Language ldentification

@ Machine Translation

o Document Summarization
@ Question Answering

@ Sentiment Detection

o Text Classification
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Approaches

supervised: data labeled with the correct answers to learn from
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Approaches

unsupervised: no label given, purely based on the given raw data = find
common structure in data
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Unsupervised Learning: General Examples

@ you see a group of people: divide them into groups

=i >3
e e
e =8
e B
e e
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Unsupervised Learning: General Examples

High High income,

. . Low-moderate education
Low education, ﬂ

Low income

Moderate-high education,
Low-moderate income

Low-moderate
income, young

Moderate education,
High Low income, middle aged
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Unsupervised Learning: General Examples

@ cluster city names, trees
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Unsupervised Learning: General Examples

@ cluster city names, trees

@ cluster places: where millionaires live like Beverly Hills and
Manhattan.

@ cluster similar blog posts: understand what the users are blogging
about.
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Supervised: K Nearest Neighbors Classification

General Idea

@ predict how I'm going to vote!
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Supervised: K Nearest Neighbors Classification

General Idea
@ predict how I'm going to vote!
@ approach - look at my neighbors are planning to vote
o better idea???
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Supervised: K Nearest Neighbors Classification

General Idea
@ predict how I'm going to vote!
@ approach - look at my neighbors are planning to vote
@ imagine you know:
e my age
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Supervised: K Nearest Neighbors Classification

General Idea

predict how |I'm going to vote!

approach - look at my neighbors are planning to vote

imagine you know:

e my age

e my income

e how many kids | have
@ new approach - look at those neighbors with similar features — better
prediction!
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Nearest Neighbors: Classification rule

@ classify a new object
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Nearest Neighbors: Classification rule

@ classify a new object
o find the object in the training set that is most similar

@ assign the category of this nearest neighbor
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K Nearest Neighbor (KNN) Classification

Take k closest neighbors instead of one

1-nearest neighbor outcome is a plus
2-nearest neighbors outeome is unknown

= 5-nearest neighbors outcome is a minus

+ +
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K Nearest Neighbor (KNN) Classification

k =5;10
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K Nearest Neighbor (KNN) Classification: Data points

o Data points are vectors in some finite-dimensional space.
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K Nearest Neighbor (KNN) Classification: Data points

o Data points are vectors in some finite-dimensional space.

e '+’ and -’ objects are 2-dimensional (2-d) vectors:

1-nearest neighbor outcome is a plus
2-nearest neighbors outcome is unknown

= 5-nearest neighbors outcome is a minus

+ +
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Data points

@ if you have the heights, weights, and ages of a large number of
people, treat your data as 3-dimensional vectors (height, weight,

age):

height_weight_age_point = [70, # kg
170, # cm,
40 | # years

December 5, 2017 16 /

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning



Data points: One-hot encoding

o Task: Represent each word from data as a vector (data point)
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e Form vocabulary (word types) from data:

data: The quick quick brown fox
HThe”

“quick”
Vocab(s) = “brow”

“fox"
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Data points: One-hot encoding

o Task: Represent each word from data as a vector (data point)
e Form vocabulary (word types) from data:

data: The quick quick brown fox

“The"

“quick”

Vocab(s) = “brow”
“fox”

@ One-hot vector is a vector filled with Os, except for a 1 at the
position associated with word
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Data points: One-hot encoding

@ Task: Represent each word from data as a vector (data point)

@ Form vocabulary (word types) from data:

data: The quick quick brown fox

“The"

“quick”

Vocab(s) = “brown”
“fox”

© One-hot vector is a vector filled with Os, except for a 1 at the
position associated with word

@ Vocabulary size = 4, one-hot 4-d vector of word " The" at the
position 0 is vhe = (1000):
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Data points: One-hot encoding

@ Task: Represent each word from data as a vector (data point)
@ Form vocabulary (word types) from data:

data: The quick quick brown fox

“The"

“ - kYY
Vocab(s) = quie

“brown”

“fox"

© One-hot vector is a vector filled with Os, except for a 1 at the
position associated with word

@ Vocabulary size = 4, one-hot 4-d vector of word " The" at the
position 0 is vrhe = (1000):

One-hot representation
vThe = (1000)
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Data points: One-hot encoding

@ Task: Represent each word from data as a vector (data point)
@ Form vocabulary (word types) from data:

data: The quick quick brown fox

“The"

“quick”
Vocab(s) = quie

“brown”
HfOXH

© One-hot vector is a vector filled with Os, except for a 1 at the
position associated with word

@ Vocabulary size = 4, one-hot 4-d vector of word " The" at the
position 0 is vhe = (1000):

One-hot representation

Vhe = (1000) Vggiex = (2727)
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Data points: One-hot encoding

@ Task: Represent each word from data as a vector (data point)
@ Form vocabulary (word types) from data:

data: The quick quick brown fox

“The"

“quick”

Vocab(s) = “brow”
“fox”

© One-hot vector is a vector filled with Os, except for a 1 at the
position associated with word

@ Vocabulary size = 4, one-hot 4-d vector of word " The" at the
position 0 is vhe = (1000):
One-hot representation
vThe = (1000) vguick = (0100)
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Data points: One-hot encoding

@ Task: Represent each word from data as a vector (data point)
@ Form vocabulary (word types) from data:

data: The quick quick brown fox

“The"

“quick”
Vocab(s) = quie

“brown”
HfOXH

© One-hot vector is a vector filled with Os, except for a 1 at the
position associated with word

@ Vocabulary size = 4, one-hot 4-d vector of word " The" at the
position 0 is vhe = (1000):

One-hot representation

Vihe = (1000) Vogek = (0100) Vorawn = (2777)
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Data points: One-hot encoding

@ Task: Represent each word from data as a vector (data point)
@ Form vocabulary (word types) from data:

data: The quick quick brown fox

“The"

“quick”
Vocab(s) = “brow”

“fox”

© One-hot vector is a vector filled with Os, except for a 1 at the
position associated with word

@ Vocabulary size = 4, one-hot 4-d vector of word " The" at the
position 0 is vhe = (1000):

One-hot representation

vThe = (1000) vguick = (0100) Vprown = (0010)
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Data points: One-hot encoding

@ Task: Represent each word from data as a vector (data point)
@ Form vocabulary (word types) from data:

data: The quick quick brown fox

“The"

“quick”
Vocab(s) = “brow”

“fox”

© One-hot vector is a vector filled with Os, except for a 1 at the
position associated with word

@ Vocabulary size = 4, one-hot 4-d vector of word " The" at the
position 0 is vhe = (1000):

One-hot representation

vThe = (1000) Vguick = (0100) Vbrown = (0010) viox = (7777)
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Data points: One-hot encoding

@ Task: Represent each word from data as a vector (data point)
@ Form vocabulary (word types) from data:

data: The quick quick brown fox

“The"

“quick”
Vocab(s) = “brow”

“fox”

© One-hot vector is a vector filled with Os, except for a 1 at the
position associated with word

@ Vocabulary size = 4, one-hot 4-d vector of word " The" at the
position 0 is vhe = (1000):

One-hot representation

Vihe = (1000) Vomek = (0100) Vorawn = (0010) vigx = (0001)
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Data points: Document representation

How we can represent a document???
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Document representation

o fixed set of elements (e.g., documents): D = {d,...d,}
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Document representation

o fixed set of elements (e.g., documents): D = {d,...d,}

@ document d (data point) is represented by a vector of features:
d e NF = d = [x1x2...xk]
o feature weights are numerical statistics (TF-IDF)
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K Nearest Neighbor (KNN) Classification

def knn_classify(k, labeled_points, new_point):
"""each labeled point is a pair (point, label)""”

# order points descending

similarities = sorted(labeled_points,
key=lambda x:
—cosin_sim (x[0], new_point))

# find the labels for the k closest
k_nearest_labels = [label for _,label
in similarities [:k]]

# and choose one
return choose_one(k_nearest_labels)
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Recall: Sort List of Tuples

>>> students = |
('john', 22),
('jane’', 20),
('dave’', 25)]

>>> sorted (students)
[("dave’, 25), ('jane', 20), ('john' 6 22)]

>>> sorted(students, key=lambda x: x[1])
[("jane', 20), ('john', 22), ('dave’', 25)]

>>> sorted(students, key=lambda x: x[1],reverse=True)
[("dave', 25), ('john', 22), ('jane', 20)]

>>> sorted(students, key=lambda x: —x[1])
[("dave’, 25), ('john', 22), ('"jane', 20)]
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Requirements. Metric for distance computation

import math
def dot_product(vl, v2):
return sum([valuelxvalue2 for valuel, value2
in zip(vl,v2)])

def cosin_sim(vl, v2):
#compute cosine similarity
prod = dot_product(vl, v2)
lenl = math.sqrt(dot_product(vl, vl))
len2 = math.sqrt(dot_product(v2, v2))
return prod / (lenl x len2)

cosin_sim ([1,2],[3,4])
>>> 0.9838699100999074
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Cosine Similarity

@ dot product expresses how much the two vectors are pointing in the
same direction
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@ dot product expresses how much the two vectors are pointing in the
same direction

@ if two documents share a lot of common terms, their tf-idf vectors
will point in a similar direction
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Cosine Similarity

@ dot product expresses how much the two vectors are pointing in the
same direction

@ if two documents share a lot of common terms, their tf-idf vectors
will point in a similar direction

@ cosine similarity = an indicator how close the documents are in the
semantics of their content
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K Nearest Neighbor (KNN) Classification

What if we have two winners (k = 2)?

1-nearest neighbor outcome is a plus
2-nearest neighb is unk
- S-nearest neighbors outcome is a minus

- -
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K Nearest Neighbor (KNN) Classification

What if we have two winners (k = 2)?

1-nearest neighbor outcome is a plus
2-nearest neighb is unk
- S-nearest neighbors outcome is a minus

+ +

Strategies:

@ Pick one of the winners at random
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K Nearest Neighbor (KNN) Classification

What if we have two winners (k = 2)?

1-nearest neighbor outcome is a plus
2-nearest neighb is unk
- S-nearest neighbors outcome is a minus

+ +

Strategies:
@ Pick one of the winners at random

@ Weight winners by distance and pick the weighted winner
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K Nearest Neighbor (KNN) Classification

What if we have two winners (k = 2)?

1-nearest neighbor outcome is a plus
2-nearest neighb xt is unk
- S-nearest neighbors outcome is a minus

+ -

Strategies:
@ Pick one of the winners at random
@ Weight winners by distance and pick the weighted winner

© Reduce k until we find a unique winner
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K Nearest Neighbor (KNN) Classification

#labels sorted from nearest to farthest
labels = ['sport’, 'cars', 'religion’
"religion ', 'sport’]
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K Nearest Neighbor (KNN) Classification

#labels sorted from nearest to farthest
labels = ['sport’, 'cars', 'religion’
"religion ', 'sport’]

2 winners: 'sport’ and ’religion’
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K Nearest Neighbor (KNN) Classification

#labels sorted from nearest to farthest
labels = ['sport’, 'cars', 'religion’
"religion ', 'sport ']

2 winners: 'sport’ and 'religion’

Reduce k until we find a unique winner:

reduced_labels = 777

December 5, 2017 35/ 57
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K Nearest Neighbor (KNN) Classification

#labels sorted from nearest to farthest
labels = ['sport’, 'cars', 'religion’
"religion ', 'sport ']

2 winners: 'sport’ and 'religion’

Reduce k until we find a unique winner

reduced_labels = labels|:-1]

print(reduced_labels)

>>> ['sport’', 'cars’', 'religion’', 'religion ']

December 5, 2017 36 / 57
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K Nearest Neighbor (KNN) Classification

#labels sorted from nearest to farthest
labels = ['sport’, 'cars', 'religion’
"religion ', 'sport']

2 winners: 'sport’ and 'religion’

Reduce k until we find a unique winner

reduced_labels = labels|[:-1]

print(reduced_labels)
>>> ['sport’', 'cars', 'religion’', ‘'religion']

now 1 winner: 'religion’
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K Nearest Neighbor (KNN) Classification

#labels sorted from nearest to farthest
labels = ['sport’, 'cars', 'religion', 'politics']

Winner??2

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning December 5, 2017 38 / 57



K Nearest Neighbor (KNN) Classification

labels = ['sport’, 'cars', 'religion', 'politics']

'sport’ I
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K Nearest Neighbor (KNN) Classification

labels = ['sport’, 'cars', 'cars', 'sport']

Wy
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K Nearest Neighbor (KNN) Classification

labels = ['sport’', 'cars’', 'cars', 'sport']

’ !
cars l
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K Nearest Neighbor (KNN) Classification

def choose_one(labels):
""" labels are ordered from nearest to farthest

oy

counts = Counter(labels)
winner, winner_count = counts.most_.common (1)[0]

# count number of winners in a list,
# i.e. how many words with equal winner_count?

#if unique winner, so return it

#else: reduce the list and try again,
# i.e call choose_one again but with reduced list

December 5, 2017 42 / 57
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from collections import Counter

colors = ['red’, 'blue', 'red’, 'green',
"blue’, 'blue’', 'red’]

cnt = Counter(colors)

print(cnt)

>>> Counter({'red’': 3, 'blue’: 3, 'green': 1})

most_common_tuple = cnt.most_.common (1)
print (most_common_tuple)
>>>[("red ', 3)]

winner , winner_count = most_.common_tuple[0]
print(winner, winner_count)
>>> red 3

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning December 5, 2017



Document Classification with KNN

o fixed set of elements (e.g., documents): D = {d,...d,}

e document d (data point) is represented by a vector of features:
de Nk —d= [X1X2...Xk]
o feature weights are numerical statistics (like TF-IDF)

@ weights are not re-weighted during learning — KNN is
”non-parametric” classifier
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Document Classification with KNN

fixed set of elements (e.g., documents): D = {di,...dn}

document d (data point) is represented by a vector of features:
deNk 5 d= [X1X2...Xk]

feature weights are numerical statistics (like TF-IDF)

weights are not re-weighted during learning — KNN is
”non-parametric” classifier

Goal - find the most similar document for a given document d and
assign the same category (1NN classification)

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning December 5, 2017 45 / 57



Unsupervised: K-Means

@ clustering algorithm
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@ clustering algorithm

@ the number of clusters k is chosen in advance

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning December 5, 2017 46 / 57



Unsupervised: K-Means

@ clustering algorithm
@ the number of clusters k is chosen in advance

@ partition the inputs into sets S1, ..., Sk using cluster centroids
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K-means clustering technique

Step 2
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k-means clustering technique
@ randomly initialize cluster centroids
@ assign each point to the centroid to which it is closest
© recompute cluster centroids
@ go back to 2 until nothing changes (or it takes too long)
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class KMeans:
""" performs k—means clustering”””
def __init__(self, k):
self .k = k # number of clusters
self .means = None # means of clusters

def classify(self, input):
"""return the index of the cluster
closest to the input (step 2)"""
return min(range(self k),
key=lambda i:

distance (input, self.means[i]))
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def train(self, inputs):
# choose k random points as the initial means
self.means = random.sample(inputs, self.k)#step 1
assignments = None
while True:
# Find new assignments
new_assignments = map(self.classify , inputs)
if assignments = new_assignments:
return # If nothing changed, we’'re done.

assignments = new_assignments
for i in range(self.k): #compute new means
i_points = [p for p, a in zip(inputs,
assignments) if a = i]
if i_points:
self.means[i] = mean(i_points)
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r = map(func, seq)

import functools
def fahrenheit(T):

return ((9.0/5)xT + 32)
temp = [36.5, 37, 37.5, 39]
F = map(fahrenheit, temp)

print(list (F))
>>> [97.7, 98.60000000000001, 99.5, 102.2]
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K-Means: Real Example

@ organize meetup for users
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-Means: Real Example

@ organize meetup for users

@ goal - choose 3 meetup locations convenient for all users

clusterer = KMeans(3)
clusterer.train(inputs)
print(clusterer.means)
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-Means: Real Example

@ organize meetup for users

@ goal - choose 3 meetup locations convenient for all users

clusterer = KMeans(3)
clusterer.train(inputs)
print(clusterer.means)

@ you find three clusters and you look for meetup venues near those
locations
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Kmeans with NLTK

from nltk import cluster

from nltk.cluster import euclidean_distance

from numpy import array

vectors = [array(f) for f in [[3, 3], [1, 2], [4, 2],

[4, 0], [2, 3], [3, 1]]]

clusterer = cluster.KMeansClusterer (2,
euclidean_distance)

clusters = clusterer.cluster(vectors, True)

print('Clustered: ', vectors)

print('As:’', clusters)

print( 'Means: ', clusterer.means())

>>> Clustered :[array ([3,3]), array([1,2]),

array ([4,2]),array([4,0]),array([2,3]),array([3,1])]
>>> As: [0, O, 0, 1, 0, 1]

>>> Means: [array ([ 2.5, 2.5]), array([ 3.5, 0.5])]
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Kmeans with NLTK

# classify a new vector

vector = array([3, 3])
print(’'classify(%s):' % vector)
print(clusterer.classify(vector))

>>> classify ([3 3]):
>>> 0
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Problems

@ How many clusters to use?

@ How to initialize cluster centroids?
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Conclusion

@ K-means is a clustering or classification algorithm?
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Conclusion

@ K-means is a clustering or classification algorithm?
e — clustering algorithm
e partitions points into K clusters: points in each cluster tend to be near
each other
e — unsupervised: points have no external classification
@ K-nearest neighbors is a clustering or classification algorithm?
— classification algorithm
determines the classification of a new point
supervised or unsupervised?
supervised: classifies a point based on the known classification of
other points.
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