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WordNet

WordNet

@ WordNet is a large lexical database of English
(semantically-oriented)

@ Nouns, verbs, adjectives and adverbs are grouped into sets of
synonyms (synsets)

@ Basis for grouping the words is their meanings.

dog
noun verb
senses senses

sense#1 sense#n sense#1 sense#n

synonyms Synonyms SYNonyms SYnonyms
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WordNet

Eng“sh WordNet online: http://wordnet.princeton.edu

WordNet Search - 3.1

Word to search for: [motorcar

Search WordNet

Display Options: [[Select option to change) 3]  Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence”

Noun

e S: (n) car, auto, automobile, machine, motorcar (a motor vehicle with four

wheels; usually propelled by an internal combustion engine) "he needs a car
to get to work"

o direct hyponym [ full hyponym

e S: (n) ambulance (a vehicle that takes people to and from
hospitals)

e S: (n) beach wagon, station wagon, wagon, estate car, beach
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WordNet

http://globalwordnet.org/
Wordnets in the World

Language = Resource name Developer(s) Contact Online License Other Resources
Browsing
Afrikaans Afrikaans North-West University, South Gerhard van NO FOR
WordNet & Africa @ Huyssteen @ Ané ACADEMIC
Bekker & USE @
Albanian AlbaNet & Viora University, Viora, Ervin Ruci & YES&#
Albania &
Arabic Arabic WordNet &@ Arabic WordNet &? Horacio NO
Rodriguez &

Multilingual | Open Multilingual | Linguistics and Multilingual Francis Bond & NO

(Arabic/ Wordnet & Studies, NTU &

English/
Malaysian/
Indonesian/

Finnish/

Hebrew/
Japanese/

Persian/

Thai/
French)
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WordNet

WordNet

@ NLTK includes the English WordNet (155,287 words and 117,659
synonym sets)

@ NLTK graphical WordNet browser: n1tk.app.wordnet ()

Current Word: Next Word: || Search
Help Shutdown

noun

¢ S: (noun) wordnet (any of the machine-readable lexical databases modeled after the
Princeton WordNet)

e S: (noun) WordNet, Princeton WordNet (a machine-readable lexical database
organized by meanings; developed at Princeton University)
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WordNet

Senses and Synonyms

Consider the sentence in (1). If we replace the word motorcar in (1)
with automobile, to get (2), the meaning of the sentence stays pretty
much the same:

@ Benz is credited with the invention of the motorcar.
@ Benz is credited with the invention of the automobile.

= Motorcar and automobile are synonyms.

Let’s explore these words with the help of WordNet )
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WordNet

Senses and Synonyms

N >>> nltk .corpus wordnet wn
23 >>> wn.synsets("motorcar")
<l [Synset("car.n.01")]

@ Motorcar has one meaning car.n.01 (=the first noun sense of
car).

@ The entity car.n.01 is called a synset, or "synonym set", a
collection of synonymous words (or "lemmas"):

N >>> wn.synset("car.n.01").lemma_names ()
PA ["car", "auto", "automobile", "machine",
motorcar"]
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WordNet

Senses and Synonyms

Synsets are described with a gloss (= definition) and some example
sentences

8 >>> wn.synset("car.n.01").definition ()

P "a motor vehicle with four wheels; usually propelled
by an internal combustion engine"

<} >>> wn.synset("car.n.01").examples ()

‘8 ["he needs a car to get to work"]
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WordNet

Senses and Synonyms

Unlike the words automobile and motorcar, which are unambiguous
and have one synset, the word car is ambiguous, having five synsets:

N >>> wn.synsets("car")
»2 [Synset("car.n.01"), Synset("car.n.02"), Synset("car.
n.03"), Synset("car.n.04"), Synset("cable_car.n.

01")]
3 2 synset wn.synsets("car"):
4 synset.lemma_names ()
5 -
G} ["car", "auto", "automobile", "machine", "motorcar"]
d ["car", "railcar", "railway_car", "railroad_car"]
] ["car", "gondola"]
} ["car", "elevator_car"]

0N ["cable_car", "car"]
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WordNet

The WordNet Hierarchy

Hypernyms and hyponyms (“is-a relation”)
@ motor vehicle is a hypernym of motorcar
@ ambulance is a hyponym of motorcar

\
mator vehicle

’.

motorcar

( compact ) (gnsguzzler)

hatch-back
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WordNet

The WordNet Hierarchy

>>> motorcar = wn.synset("car.n.01")

>>> types_of_motorcar = motorcar.hyponyms ()

>>> types_of_motorcar[26]

Synset("ambulance.n.01")

>>> sorted ([lemma.name () synset types_of_motorcar

lemma synset.lemmas () ])

["Model_T", "S.U.V.", "SUV", "Stanley_Steamer", "ambulance"
, "beach_waggon", "beach_wagon", "bus", "cab", "
compact", "compact_car", "convertible", "coupe", "
cruiser", "electric", "electric_automobile", "
electric_car", "estate_car", "gas_guzzler", "hack", "
hardtop", "hatchback", "heap", "horseless_carriage", "
hot—rod", "hot_rod", "jalopy", "jeep", "landrover", "
limo", "limousine", "loaner", "minicar", "minivan", "
pace_car", "patrol_car", "phaeton", "police_car", "
police_cruiser", "prowl_car", "race_car", "racer", "
racing_car" ... ]

6
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WordNet

The WordNet Hierarchy

1
2
]
4
5
6
7

>>> motorcar.hypernyms ()
[Synset("motor_vehicle.n.01")]

>>> paths = motorcar. hypernym_paths ()
>>> len(paths)

2

>>> [synset.name() synset paths[0]]

["entity .n.01", "physical_entity.n.01", "object.n.01"
, "whole.n.02", "artifact.n.01", "instrumentality
.n.03", "container.n.01", "wheeled vehicle.n.01",
"self—propelled_vehicle.n.01", "motor_vehicle.n.
01", "car.n.01"]

>>> [synset.name() synset paths[1]]

["entity.n.01", "physical_entity.n.01", "object.n.01"
, "whole.n.02", "artifact.n.01", "instrumentality
.n.03", "conveyance.n.03", "vehicle.n.01", "
wheeled_vehicle.n.01", "self—propelled_vehicle .n.
01", "motor_vehicle.n.01", "car.n.01"]
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WordNet

More Lexical Relations

Meronyms and holonyms
@ branchis a meronym (part meronym) of tree
@ heartwood is a meronym (substance meronym) of tree
@ forestis a holonym (member holonym) of tree
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WordNet

More Lexical Relations

N >>> wn.synset("tree.n.01").part_meronyms ()

21 [Synset("burl.n.02"), Synset("crown.n.07"), Synset("
stump.n.01"), Synset("trunk.n.01"), Synset("limb.
n.02")1]

>>> wn.synset("tree.n.01").substance_meronyms ()

[Synset("heartwood.n.01"), Synset("sapwood.n.01")]

>>> wn.synset("tree.n.01").member_holonyms ()

[Synset("forest.n.01")]

o O~ W
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WordNet

More Lexical Relations

Relationships between verbs:
@ the act of walking involves the act of stepping, so walking entails
stepping
@ some verbs have multiple entailments

>>> wn.synset("walk.v.01").entailments ()
[Synset("step.v.01")]

>>> wn.synset("eat.v.01").entailments ()
[Synset("swallow.v.01"), Synset("chew.v.01")]

>>> wn.synset("tease.v.03").entailments ()
[Synset("arouse.v.07"), Synset("disappoint.v.01")]

o OB~ W N =
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WordNet

More Lexical Relations

Some lexical relationships can express antonymy:

o B~ W N =

©

>>> wn.lemma("supply.n.02.supply").antonyms ()

[Lemma( "demand.n.02.demand") ]

>>> wn.lemma("rush.v.01.rush").antonyms ()

[Lemma("linger.v.04.linger")]

>>> wn.lemma("horizontal.a.01.horizontal") .antonyms ()

[Lemma("vertical . .a.01.vertical"), Lemma("inclined .a.
02.inclined")]

>>> wn.lemma("staccato.r.01.staccato").antonyms ()

[Lemma("legato.r.01.legato")]
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WordNet

More Lexical Relations

You can see the lexical relations, and the other methods defined on a
synset, using dir (). For example:

nltk
nltk .corpus wordnet wn

(wn.synsets ("motorcar"))
# [Synset( car.n.01 )]

(dir (wn.synsets ("motorcar")[0]))

# [ ... ~common_hypernyms , definition , entailments , examples
, frame_ids , hypernym_distances , hypernym_paths ,
hypernyms , hyponyms , instance_hypernyms |,
instance_hyponyms , jcn_similarity , Ich_similarity ,
lemma_names , lemmas , lexname , lin_similarity ,
lowest_common_hypernyms , max_depth , member_holonyms ,
member_meronyms , min_depth , name , offset ,
part_holonyms , part_ meronyms , path_similarity , pos ,
region_domains , res_similarity , root_hypernyms ,
shortest_path_distance , similar_tos , substance_holonyms ,

substance_meronyms , topic_domains , tree , unicode_repr

usage domains verb groups wup similarit
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WordNet

Semantic Similarity

Two synsets linked to the same root may have several hypernyms in
common. If two synsets share a very specific hypernym (low down in
the hypernym hierarchy), they must be closely related.

>>> right = wn.synset("right_whale.n.01")
>>> orca = wn.synset("orca.n.01")

>>> minke = wn.synset("minke_whale.n.01")
>>> tortoise = wn.synset("tortoise.n.01")
>>> novel = wn.synset("novel.n.01")

>>> right.lowest_common_hypernyms (minke)
[Synset("baleen_whale.n.01")]

>>> right.lowest_common_hypernyms(orca)
[Synset("whale.n.02")]

>>> right.lowest_common_hypernyms(tortoise)
[Synset("vertebrate.n.01")]

>>> right.lowest_common_hypernyms(novel)
[Synset("entity .n.01")]

© 0 N O OB~ WN =

—_ a a
N = O

—
w
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WordNet

Semantic Similarity

We can quantify this concept of generality by looking up the depth of
each synset:

N >>> wn.synset("baleen_whale.n.01").min_depth ()
2 K

<l >>> wn.synset("whale.n.02").min_depth ()

‘4 13

51 >>> wn.synset("vertebrate.n.01").min_depth ()

] 8

74 >>> wn.synset("entity .n.01").min_depth ()

8 U
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WordNet

Semantic Similarity

Similarity measures have been defined over the collection of WordNet
synsets that incorporate this insight

@ path_similarity () assigns a score in the range 0-1 based
on the shortest path that connects the concepts in the hypernym
hierarchy

@ -1 is returned in those cases where a path cannot be found
@ Comparing a synset with itself will return 1
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WordNet

Semantic Similarity

8 >>> right.path_similarity (minke)

21 0.25

<} >>> right.path_similarity (orca)

‘4 0.16666666666666666

5| >>> right.path_similarity (tortoise)
G| 0.076923076923076927

74 >>> right.path_similarity (novel)

| 0.043478260869565216
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WordNet

Similarity between nouns

@ ("car", "automobile")
@ synsetsi("car") = [synsety, synseto, synsetis]
nltk.corpus.wordnet.synsets ("car")

@ synsets2("automobile") = [synselr, Synsetos, synsetos]
nltk.corpus.wordnet.synsets ("automobile")

@ consider all combinations of synsets formed by the synsets of the
words in the word pair ("car”, "automobile”)
[(synseti1, synset), (synseti, synsetz), (synseti, synsetys), ...]
@ determine score of each combination e.g.:
synsetyy .path_similarity (synsefr)
@ determine the maximum score — indicator of similarity
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WordNet

Semantic Similarity

Can you think of an NLP application for which semantic similarity will
be helpful?

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 24/67



WordNet

Semantic Similarity

Can you think of an NLP application for which semantic similarity will
be helpful?

Suggestion

Coreference Resolution:
| saw an orca. The whale was huge.

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 25/67



WordNet

Polysemy

@ The polysemy of a word is the number of senses it has.
@ The noun dog has 7 senses in WordNet:

nltk .corpus wordnet wn
num_senses=len (wn.synsets ("dog","n"))

1

2

3

4 (num_senses)

N #prints 7

@ We can also compute the average polysemy of nouns, verbs,
adjectives and adverbs according to WordNet.

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 26/67



WordNet

Polysemy of nouns

We can also compute the average polysemy of nouns.
@ Fetch all lemmas in WordNet that have a given POS:
nltk.corpus.wordnet.all_ lemma_names (POS)

1 nltk .corpus wordnet wn
28 all_lemmas=set(wn.all_lemma_names("n"))
] (len(all_lemmas))

U8 #prints 117798

@ Determine meanings of each lemma:
nltk.corpus.wordnet.synsets (lemma, pos) returns
list of senses to a given lemma and POS, e.g. for "car”

1 nltk .corpus wordnet wn
28 meanings=wn.synsets("car","n")
3 (meanings)

‘8 #[Synset( car.n.01 ), Synset( car.n.02 ), .. )]

@ Sum up the number of meanings of each lemma (restricted to
nouns) and devide this by the total number of lemmas
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WordNet

Lesk Similarity

Compute the average polysemy of nouns ’car’, ’automobile’, 'motorcar’

—_

all_lemma_nouns = [ car , automobile , motorcar ]
»J senses_car = [Synset( car.n.01 ), Synset( car.n.02 ),
Synset( car.n.03 ),Synset( cable_car.n.01 )]
senses_automobile = [Synset( car.n.01 )]
‘8 senses_motorcar = [Synset( car.n.01 )]

w

average polysemy
average_polysemy = ??7?
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Lesk Algorithm

Lesk Algorithm

@ classical algorithm for Word Sense Disambiguation (WSD)
introduced by Michael E. Lesk in 1986

@ idea: word’s dictionary definitions are likely to be good indicators
for the senses they define
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Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash
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Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2  This cigar burns slowly and
creates a stiff ash

Table: Disambiguation of ash with Lesk’s algorithm
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Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2  This cigar burns slowly and
creates a stiff ash

Table: Disambiguation of ash with Lesk’s algorithm
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Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2  This cigar burns slowly and
01 creates a stiff ash

Table: Disambiguation of ash with Lesk’s algorithm
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Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2 The ash is one of the last trees
299 to come into leaf

Table: Disambiguation of ash with Lesk’s algorithm

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 34/67



Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2 The ash is one of the last trees
10 to come into leaf

Table: Disambiguation of ash with Lesk’s algorithm
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Lesk Algorithm

Lesk Algorithm

1 == nltk .wsd lesk

A >>> sent = [ | , went , to , the , bank , to ,
deposit , money , . ]

K}

£y >>> (lesk(sent, bank , n))

N Synset( savings_bank.n.02 )
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Lesk Algorithm

Lesk Algorithm

The definitions for "bank" are:

|4
H
"
H
| 10|

>>> nltk . corpus wsordnet wn
>>> ss wn.synsets( bank ):
(ss, ss.definition())

Synset( bank.n.01 ) sloping land (especially the slope beside a body of water)
Synset( depository financial_institution.n.01 ) a financial institution that accepts

deposits channels the money into lending activities
Synset( bank.n.03 ) a long ridge pile
Synset( bank.n.04 ) an arrangement of similar objects a row tiers
Synset( bank.n.05 ) a supply stock held reserve future use (especially

emergencies)
Synset( bank.n.06 ) the funds held by a gambling house the dealer some gambling

games

Synset( bank.n.07 ) a slope the turn of a road track; the outside higher than
the inside order to reduce the effects of centrifugal force

Synset( savings_bank.n.02 ) a container (usually with a slot the top) keeping
money at home

Synset( bank.n.09 ) a building which the business of banking transacted

Synset( bank.n.10 ) a flight maneuver; aircraft tips laterally about its longitudinal
axis (especially turning)

Synset( bank.v.01 ) tip laterally

Synset( bank.v.02 ) enclose with a bank

Synset( bank.v.03 ) do business with a bank keep an account at a bank
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Lesk Algorithm

Lesk Algorithm

Check implementation via
http://www.nltk.org/_modules/nltk/wsd.html
lesk (context_sentence, ambiguous_word, pos=None,
synsets=None) :

context = set(context_sentence)

synsets None:
synsets = wordnet.synsets (ambiguous_word)
pos :
synsets = [ss Ss synsets str(ss.pos()) ==
pos ]
synsets:
None

_, sense = max(
(len(context.intersection(ss.definition ().split()))
, SS) ss synsets

sense
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Lesk Algorithm

Lesk Algorithm
Check implementation via

http://www.nltk.org/_modules/nltk/wsd.html

lesk (context_sentence, ambiguous_word, pos=None,
synsets=None) :

synsets:
None
inters = []
ss synsets:

defin_words = ss.definition ().split ()
intersec_words = context.intersection (defin_words)
len_iter = len(intersec_words)
inters .append((len_iter ,ss))

_,sense = max(inters)

sense
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Lesk Algorithm

Lesk Algorithm

@ Information derived from a dictionary is insufficient for high quality
Word Sense Disambiguation (WSD).

@ Lesk reports accuracies between 50% and 70%.
@ Optimizations: to expand each word in the context with a list of
synonyms

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 40/67



Lesk Algorithm

Lesk Similarity

@ The Lesk similarity of two concepts is defined as the textual
overlap between the corresponding definitions, as provided
by a dictionary.

@ Punctuation in definitions should be eliminated, because they
do not have a meaning. If two definitions contain punctuation, the
score increases.

@ The larger a text, the higher can its score be. It should be
normalized to allow a fair comparison — devide overlap by
maximum matching number
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Lesk Algorithm

Lesk Similarity

lesk_similarity (synseti ,synset2):

#TODO find tokens of wordnet definition of synsetl, ignore
punctuation

definition_words1 =

#TODO find tokens of wordnet definition of synset2, ignore
punctuation
definition_words2 =

#TODO calculate maximum matching number (length of shortest
definition)
max_match =

#IODO find overlap in definitions , consider words occuring
twice
overlap =

overlap/max_match

(lesk_similarity (wn.synset( car.n.01 ),wn.synset( wheel.n.01

)))
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Lesk Algorithm

Lesk Similarity

Find overlap in definitions, consider word occurring twice?

8 defl = [ a , motor , vehicle , propelled , by , a
, combustion , engine ]
» def2 = [ a , vehicle , that , takes , people ,
to , a , hospital ]

overlap_number

overlap_number = ???
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Preprocessing

Preprocessing

Original The boy’s cars are different colors.

Tokenized ["The", "boy’s", "cars", "are", "different", "colors."]
Punctuation removal ["The", "boy’s", "cars", "are", "different", "colors"]
Lowecased ['the", "boy’s", "cars", "are", "different", "colors"]
Stemmed ['the", "boy’s", "car", "are", "differ", "color"]
Lemmatized ['the", "boy’s", "car", "are", "different", "color"]
Stopword removal ["boy’s", "car", "different", "color"]
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Preprocessing

Tokenization

@ Tokenization is the process of breaking raw text into its building
parts: words, phrases, symbols, or other meaningful elements
called tokens.

@ A list of tokens is almost always the first step to any other NLP
task, such as part-of-speech tagging and named entity
recognition.
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Preprocessing

Tokenization

@ token —is an instance of a sequence of characters in some
particular document that are grouped together as a useful
semantic unit for processing

@ type —is the class of all tokens containing the same character
sequence
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Preprocessing

Tokenization

@ What is Token?
@ Fairly trivial: chop on whitespace and throw away punctuation
characters.

@ Tricky cases: various uses of the apostrophe for possession and
contractions?
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Preprocessing

Tokenization

Mrs. O’Reilly said that the girls’ bags from
H&M’ s shop in New York aren’t cheap.

Mrs. "Mrs.”; "Mrs”, "”
O'Reilly | "O'Reilly”; "OReilly”; "O™, "Reilly”; "O", ", "Reilly”;
aren’t "aren’t”; "arent”; "are", "n’t”; "aren", "t”
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Preprocessing

Tokenization

Tokenize manually the following sentence. How many tokens do you
get?

Mrs. O’Reilly said that the girls’ bags from
H&M’ s shop in New York aren’t cheap.
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Preprocessing

Tokenization

??7?

Tokenize manually the following sentence:

Mrs. O’Reilly said that the girls’ bags from

H&M’s shop in New York aren’t cheap.

Answer

NLTK returns the following 20 tokens:

["Mrs.", "O’Reilly", "said", "that",
"girls", nwr ", "bagsll, "from", "H", "&

| \

"the " ,

" " n
4 M 14

"IS", "ShOp", ||in", "New", "York", "are",

"nlt", "Cheap", "."]
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Preprocessing

Tokenization

Most decisions need to be met depending on the language at hand.
Some problematic cases for English include:

@ hyphenation — ex-wife, Cooper-Hofstadter, the bazinga-him-again
maneuver

@ internal white spaces — New York, +49 89 21809719, January 1,
1995, San Francisco-Los Angeles

@ apostrophe — O’Reilly, aren’t
@ other cases — H&M's
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Preprocessing

Sentence Segmentation

Tokenization can be approached at any level:
@ word segmentation
@ sentence segmentation
@ paragraph segmentation
@ other elements of the text
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Preprocessing

Segmentation

NLTK comes with a whole bunch of tokenization possibilities:

1 nltk word_tokenize,
wordpunct_tokenize
A >>> s = "Good muffins cost $3.88\nin New York.

Please buy me\n two of them.\n\nThanks."
<l >>> word_tokenize(s)

/M [ Good , muffins , cost , $ , 3.88 , in , New ,
York , . , Please , buy , me , two , of ,
them , . , Thanks , . ]

51 >>> wordpunct_tokenize (s)

& [ Good , muffins , cost , $, 3, . , 88, in

, New , York , . , Please , buy , me , two
, of , them , . , Thanks , . ]
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Preprocessing

Segmentation

NLTK comes with a whole bunch of tokenization possibilities:

N >>> nltk .tokenize *

PN >>> # same as s.split():

<} >>> WhitespaceTokenizer () .tokenize(s)

‘M [ Good , muffins , cost , $3.88 , in , New |,
York. , Please , buy , me , two , of ,
them. , Thanks. ]

) >>> # same as s.split(" "):

G >>> SpaceTokenizer () .tokenize (s)

M [ Good , muffins , cost , $3.88\nin , New , York

., , Please , buy , me\ntwo , of , them
.An\nThanks. ]
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Preprocessing

Segmentation

NLTK comes with a whole bunch of tokenization possibilities:

>>> # same as s.split( \n ):
>>> LineTokenizer(blanklines= keep ).tokenize(s)

< [ Good muffins cost $3.88 , in New York. Please buy
me , two of them. , ,  Thanks. ]

!N >>> # same as [| for | in s.split( \n ) if |.strip()
]-.

58 >>> LineTokenizer(blanklines= discard ).tokenize(s)

| [ Good muffins cost $3.88 , in New York. Please buy
me , two of them. , Thanks. ]

4 >>> # same as s.split( \t ):
<l >>> TabTokenizer().tokenize( a\tb c\n\t d )
[ a, bc\n, d ]
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Preprocessing

Segmentation

NLTK PunktSentenceTokenizer: divides a text into a list of sentences

1 nltk . data

28 >>> text = "Punkt knows that the periods in Mr. Smith and
Johann S. Bach do not mark sentence boundaries. And
sometimes sentences can start with non—capitalized
words. i is a good variable name."

<} >>> sent_detector = nltk.data.load( tokenizers/punkt/
english.pickle )

Cy >>> \n—— \n .join(sent_detector.tokenize (text.
strip()))

N # Punkt knows that the periods in Mr. Smith and Johann S.
Bach do not mark sentence boundaries.

CN #

A # And sometimes sentences can start with non—capitalized
words.

#

# i is a good variable name.
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Preprocessing

Normalization

Once the text has been segmented into its tokens (paragraphs,
sentences, words), most NLP pipelines do a number of other basic
procedures for text normalization, e.g.:

@ lowercasing

@ stemming

@ lemmatization

@ stopword removal
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Preprocessing

Lowercasing

Lowercasing:
nltk

string = "The boy’s cars are different colors."
tokens = nltk.word_tokenize(string)
lower = [x.lower () X tokens|]

(" ".join(lower))

# prints
# the boy 's cars are different colors

© 0 NOoO O~ WN =
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Preprocessing

@ Often, however, instead of working with all word forms, we would
like to extract and work with their base forms (e.g. lemmas or
stems)

@ Thus with stemming and lemmatization we aim to reduce
inflectional (and sometimes derivational) forms to their base
forms.
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Preprocessing

Stemming

Stemming: removing morphological affixes from words, leaving only
the word stem.

1 nltk

2

€l string = "The boy’s cars are different colors."

“% tokens = nltk.word_tokenize(string)

5} lower = [x.lower () X tokens]

G} stemmed = [stem(x) X lower]

7 (" ".join (stemmed))

8

9 stem (word) :

0 suffix ["ing", "ly", "ed", "ious", "ies", "ive",
"es", "s", "ment"]:

word . endswith (suffix):
word[: —len(suffix)]
word
# prints
# the boy ‘s car are different color .
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Preprocessing

Stemming

Stemming:

0o ~NoO oA WN =

nltk
re

string = "The boy s cars are different colors."
tokens = nltk.word_tokenize(string)
lower = [x.lower () X tokens]
stemmed = [stem(x) X lower]
(" ".join (stemmed))

stem (word) :
regexp = r"*(.x?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$"
stem, suffix = re.findall (regexp, word)[0]

stem

# prints
# the boy ‘s car are different color .
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Preprocessing

Stemming

NLTK’s stemmers:

@ Porter Stemmer is the oldest stemming algorithm supported in
NLTK, originally published in 1979.
http:
//www.tartarus.org/~martin/PorterStemmer/
@ Lancaster Stemmer is much newer, published in 1990, and is
more aggressive than the Porter stemming algorithm.

@ Snowball stemmer currently supports several languages:
Danish, Dutch, English, Finnish, French, German, Hungarian,
Italian, Norwegian, Porter, Portuguese, Romanian, Russian,
Spanish, Swedish.

@ Snowball stemmer: slightly faster computation time than porter.
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Preprocessing

Stemming

NLTK’s stemmers:

0N Ok WD =

nltk
string = "The boy’s cars are different colors."
tokens = nltk.word_tokenize(string)
lower = [x.lower () X tokens]

porter = nltk.PorterStemmer ()

stemmed = [porter.stem(t) t lower]
(" ".join (stemmed))
# prints

# the boy ‘s car are differ color

lancaster = nltk.LancasterStemmer ()

stemmed = [lancaster.stem(t) t lower]
(" ".join (stemmed))
# prints

# the boy ‘s car ar diff col
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Preprocessing

Stemming

NLTK’s stemmers:

1 nltk

2

kN string = "The boy’s cars are different colors."
‘8 tokens = nltk.word_tokenize (string)

5| lower = [x.lower () X tokens]

6

74 snowball = nltk.SnowballStemmer("english™")

) stemmed = [snowball.stem(t) t lower]

9 (" ".join (stemmed))

8 # prints

-
—_

# the boy ‘s car are differ color
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Preprocessing

Lemmatization

@ stemming can often create non-existent words, whereas lemmas
are actual words

@ NLTK WordNet Lemmatizer uses the WordNet Database to
lookup lemmas

1 nltk

P4 string = "The boy’s cars are different colors."

<}| tokens = nltk.word_tokenize(string)

“Y% lower = [x.lower () X tokens]

5} porter = nltk.PorterStemmer ()

G stemmed = [porter.stem(t) t lower]

7 (" ".join(lemmatized))

8 # prints the boy ‘s car are differ color .
wnl = nltk . WordNetLemmatizer ()
lemmatized = [wnl.lemmatize(t) t lower]

(" ".join(lemmatized))

# prints the boy ‘s car are different color .
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Preprocessing

Stopword removal:

Stopword removal:

1 nltk
2
k8 string = "The boy s cars are different colors."
‘8 tokens = nltk.word_tokenize (string)
51 lower = [x.lower () X tokens]
) wnl = nltk.WordNetLemmatizer ()
74 lemmatized = [wnl.lemmatize(t) t lower]
8
¢} content = [x X lemmatized X nitk .
corpus . stopwords.words("english")]
(" ".join(content))
# prints

# boy ‘s car different color
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Preprocessing
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